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Abstract—Steady-state somatosensory evoked potential
(SSSEP) is a recently developing brain-computer interface (BCI)
paradigm where the brain response to tactile stimulation of a
specific frequency is used. Generally, SSSEP-based BCI classifies
whether the subjects focus on the tactile stimulation at the
fingers in the left or right hand. In this paper, we examine
the spatial pattern difference in SSSEP from each kind of
focuses. The experimental results showed that when the subjects
focus to the stimulation at one hand, SSSEP response in the
contralateral side decreases. These results could be related to
the neurological background, that the sensory cortices for each
hand is located in the contra lateral sides of the hands. We also
investigate the spatial patterns obtained from common spatial
pattern (CSP). In the survey results, the spatial filters, whose
corresponding spatial pattern vectors emphasize the left and
right parietal lobes, where the somatosensory cortices for each
hand are located, made clearly separable clusters of the feature
values for each class.
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interface; steady-state somatosensory evoked potential (SSSEP);
common spatial pattern

I. INTRODUCTION

The brain computer interface (BCI) is a system that pro-
vides a direct communication pathway between the brain and
external devices by analyzing various brain signals [1]. Among
various BCI techniques, steady-state somatosensory evoked
potential (SSSEP)-based BCI has attracted the attention of BCI
researchers, since its suitability as an interface was examined
in [2]. SSSEP-based BCI analyzes the amplitude response of
EEG signals for vibratory tactile stimuli. If a single tactile
stimulation is given to a subject, an evoked potential with
a specific waveform will be generated in the EEG signals.
Likewise, if tactile stimulations are periodically applied in the
form of a vibration with a specific frequency, the following
evoked potentials will also be periodic. By examining this
periodic response with time-frequency analysis, we can detect
the type of the stimulation frequency being given to the subject.
Müller-Putz et al. [2] reported that selective attention to a
specific stimulus can modulate the induced SSSEP, and they
exploited this paradigm to implement a novel BCI system.

They also mentioned about two unique advantages of
SSSEP-based BCI against other BCI techniques. First, it
observes the increase of power in the frequency bands of given
tactile stimuli, so its signal response is easier to detect than
the event-related desynchronization (ERD), which is observed

as the power decrease of µ-rhythm in the motor imagery BCI.
Second, be compared to SSVEP-based BCI, SSSEP-based BCI
is applicable even to the completely paralyzed patients, who
lose the ability of voluntary gaze control. In many cases,
the somatosensory system is more slowly affected than the
motor system of persons suffering from most neuromuscular
degenerative disorder.

To utilize above advantages, a series of researches was
performed to implement and improve the SSSEP-based BCI.
Dan Zhang et al. [3] developed a multi-modal BCI system,
integrating the SSSEP and SSVEP-based BCIs, that can dis-
criminate three kinds of mental tasks: attention to the 1) visual
stimulus, 2) tactile stimulus at the right hand, and 3) the left
hand. Ahn et al. [4] compared the performances of the motor
imagery and SSSEP-based BCI, to investigate the feasibility
of hybrid approach.

Recently, we [5] applied the common spatial pattern (CSP)
method, which is one of the most intensively studied feature
extraction method for the motor imagery BCI paradigm [6],
[7], to SSSEP-based BCI. We pointed out that the distance
between two somatosensory cortices corresponding to the left
hand and right hand is sufficient to allow detection of the
partial activations of each cortex. We assumed that the selective
attention can evoke the partial activation of each cortex, and
showed that CSP can extract the discriminative signal compo-
nents emphasizing the spatial difference of the activations. We
exploited the modified CSP approach, which applies CSP to
the signals of each frequency band, to improve the performance
of SSSEP-based BCI, and proved its usefulness.

However, we did not extensively considered about which
channels (or brain regions) mainly contribute for the classifica-
tion. We found the importance of C3 and C4 channels, but did
not surveyed whether these channels actually show different
responses to each attention or how much the differences are
significant. In this paper, we examine the spatial pattern differ-
ence in SSSEP from each attention, to validate the usefulness
of spatial information for SSSEP analysis and provide practical
information for implementing SSSEP-based BCI system.

The rest of this paper is organized as follows. In Section II,
we describe our experimental design for evoking and recording
SSSEP, then explain the CSP method to analyze it. In Section
III, we analyze the difference between the spatial patterns
of SSSEP, recorded during the different attentions. We also



present the discriminative spatial pattern of SSSEP obtained
from CSP method, with its classification results. Finally, our
results are summarized and discussed in Section IV.

II. METHOD

In this section, we describe the experimental design includ-
ing the stimulation unit and EEG recording device. We also
explain our signal processing method based on the CSP.

A. Experimental Design

To elicit SSSEP response, we used two round shaped-
vibration motors with a radius of 1 cm as the transducer. To
control the transducers, 22 Hz and 27 Hz digital pulse signals
were generated by a C++ based program. 22 Hz signal was
transmitted to the transducer attached on the thumb of the
left hand, and 27 Hz signal was transmitted to the transducer
attached on the thumb of the right hand. The EEG signals
used in this study were recorded using a Biosemi Active Twor

system. The sampling rate was 512 Hz and the signals in each
trial were band-pass filtered between 0.5 Hz and 40 Hz. With
mentioned transducers and EEG recording device, we designed
the BCI system, as graphically depicted in Fig. 1.

For each trial, two vibratory stimuli with different fre-
quencies were administered to the subjects, having a duration
of 10 s. Before the stimuli were administered, one of the
transducers vibrated for 2 s as the cue. The subjects were asked
to concentrate on the transducer that was indicated by the cue.
For every session, we collected 40 trials, half of which (n=20)
were assigned to the cue on the left hand, and half to the cue on
the right hand. The set of trials assigned to the cue on the left
and right hand are denoted below by L and R, respectively.
We examined the spatial pattern differences of SSSEP between
L and R and tried the classification between them. We used
two classification methods. As the basic approach, the first
method used the amplitudes of raw signals as the classification
feature. In the second method, we applied CSP to extract the
discriminative signal components, then used their amplitudes
as the features for the classification.
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Fig. 1. Overview of the SSSEP-based BCI system

B. Using Amplitudes of Raw Signals (RS)

In the first method, we used the amplitudes of the frequen-
cies of the stimuli (f1 = 22 Hz and f2 = 27 Hz) as the

feature vector for the classification. Let us denote the EEG
signals recorded in the n-th trial as Xn ∈ R30×5120, while
30 is the number of EEG channels and 5120 is the temporal
length of 10 s EEG signals. In this method, the feature vector
zn for Xn is obtained

zn =

[
Amp(f1)(Xn)

Amp(f2)(Xn)

]
, (1)

where Amp(f)(X) is the function that returns the amplitude
of FFT (Fast Fourier Transform) on the frequency f from each
channel of the signals X . In our experiment, the signals from
30-channel EEG sernsors were recorded, and therefore each
zn has the form of R60×1 vector. To build the classification
model to discriminate between zn∈L and zn∈R, we used a
linear support vector machine (SVM). The performance of the
classification will be presented in Section III.

C. CSP for SSSEP Analysis

To improve the classification performance, we applied CSP
to the raw signals, then compared the amplitudes of extracted
signal components, as did in [5]. From the recorded signals
X , we calculated two covariance matrices for each class as

ΣL =
1

NL

∑
n∈L

XnX
>
n , (2)

ΣR =
1

NR

∑
n∈R

XnX
>
n , (3)

where NL and NR are the number of trials in each class. From
the sum of two matrices Σ = ΣL + ΣR, we measured the
whitening matrix P , satisfying P>ΣP = I . If the eigen-
decomposition of Σ has the form Σ = UΛU>, the whitening
matrix P can be measured by P = UΛ−

1
2 .

Let us consider V that can diagonalize P>ΣLP . Rewrite
P>ΣP = I to P>(ΣL +ΣR)P = I , and apply V to both
sides of the equation as

V >(P>ΣLP + P>ΣRP )V = I. (4)

With considering that both of V >(P>ΣLP )V and
V >(P>ΣRP )V are diagonal matrices, the spatial filter ma-
trix W = PV can diagonalize ΣL and ΣR simultaneously.
Meanwhile, if i-th diagonal element of W>ΣLW is λi, the
i-th diagonal element of W>ΣRW should be 1−λi. W can
diagonalize both of ΣL and ΣR, and corresponding diagonal
values are reversely ordered. Therefore, a spatial filter wi (i-th
column vector of W ) associated with larger λi close to 1, can
maximize the variance of the projected signals of Xn∈L, while
minimize the variance of the projected signals of Xn∈R.

To extract better spatial filters, which work more efficiently
for each frequency band, we applied CSP method to already
band-pass filtered signals for two frequency bands, respec-
tively. We first obtained band-pass filtered signals Xn(f1) and
Xn(f2) from the raw signals Xn. Xn(f1) is band-pass filtered
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Fig. 2. Amplitude differences

between f1−1 Hz to f1+1 Hz, and Xn(f2) is filtered between
f2 − 1 Hz to f2 + 1 Hz,

We calculated the covariance matrices ΣL(f1) and ΣR(f1)
from X(n∈L)(f1) and X(n∈R)(f1), and calculated ΣL(f2) and
ΣR(f2) from X(n∈L)(f2) and X(n∈R)(f2), as we did in (2)
and (3). By the CSP approach, we obtained the spatial filter
matrices Q and R. Q can diagonalize ΣL(f1) and ΣR(f1)
simultaneously, while R can diagonalize ΣL(f2) and ΣR(f2).

From Q and R, we collected the eigenvectors correspond-
ing to the four largest and four smallest eigenvalues and
denoted them by

Q̃ = [q1, · · · , q4, q27, · · · , q30] , (5)
R̃ = [r1, · · · , r4, r27, · · · , r30] . (6)

Q̃ is the discriminative filter for Xn(f1), while R̃ is the
filter for Xn(f2). Therefore, we measured the amplitude of

Q̃
>
Xn(f1) on f1 Hz, and the amplitude of R̃

>
Xn(f2) on f2

Hz. By concatenating the amplitudes, we obtained the feature
vector z′n ∈ R16×1 corresponding to Xn:

z′n =

[
Amp(f1)

(Q̃
>
Xn(f1))

Amp(f2)
(R̃
>
Xn(f2))

]
. (7)

Then, the classification model for discriminating z′n∈L and
z′n∈R was trained.

III. EXPERIMENTS

A. Spatial Patterns of SSSEP

In [5], we showed that CSP can extract useful spatial filters
emphasizing the difference between the signals in L and R.
However, they did not extensively considered about which
channels (or brain region) are crucial for the SSSEP analysis
due to their different responses to each attention. To prove the
importance of the spatial information for SSSEP analysis, and
support the idea of applying CSP, we examined the spatial
pattern difference between L and R.

To evaluate the differences in a statistical manner, we
measured t-values from Welch’s t-test for channel c, such that

tc =
µn∈L − µn∈R√
σ2
n∈L
NL

+
σ2
n∈R
NR

(8)

where µn∈L and σn∈L are the mean value and standard devi-
ation of zn∈L, while µn∈R and σn∈R are the values for zn∈R.
This t value is proportional to the difference between two
groups, but inversely proportional to the standard deviations
of each group. Therefore, t provides better measurement to
evaluate the discriminability than µn∈L − µn∈R.

To measure the amplitude change of L against R on f1, we
measured t values and illustrated them by a topographic map
in the left column of Fig. 2. We can see that the amplitude
decreases were mainly occurred on the right hemisphere of
the brain. We also denoted the channel with the highest
discriminability having the maximum |t| value by “×” marks
in the plots. For all subjects, the “×” marks were located in the
right side of the brain. To clarify the meaning of the values
in Fig. 2, we plotted each trial’s amplitudes in the channels
with the maximum discriminability in Fig. 3 with error bars
represent the mean and standard deviation for each class.

The amplitude change of R against L on f2 was also
illustrated in the right column of Fig. 2. For the illustration,
we modified (8) with replacing µn∈L−µn∈R to µn∈R−µn∈L.
In contrast to the results in the left column, the amplitude
decreases were mainly observable on the left hemisphere, and
the channels with the highest discriminability were located in
the left side of the brain. Before the experiments, we assumed
that the attention on the one hand will increase the amplitudes
on the channels in the contralateral side, because of the neu-
rological background that the somatosensory cortices for each
hand is located in the contralateral sides of the hands. However,
experimental results showed that the attention decreases the
amplitudes, rather than increases. Although this decrease is
not in agreement with the background, we identified that the
amplitude change from the attention is mainly observable in
the contralateral side of the attended hand.

We also assumed that the amplitude changes will be domi-
nantly observed in the parietal region near the somatosensory
cortex. However, the experimental results showed that the
frontal region is also sensitive to the change of attention.

B. Discriminative Spatial Patterns from CSP

In the next step, we investigated the spatial pattern from
the CSP method. From the spatial filter matrix W , the spatial
pattern vector ai corresponding to i-th signal component
w>i X is obtained form i-th row vector of W−1. The c-th value
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Fig. 3. Amplitudes in the channels with the maximum discriminability

TABLE I
CLASSIFICATION ACCURACY

Subjects RS CSP
Session 1 Session 2 Session 1 Session 2

1 67.5 60.0 57.5 85.0
2 87.5 87.5 70.0 85.0
3 85.0 97.5 90.0 95.0

in vector ai signifies the influence of i-th signal component to
channel c of the original signals X .

We plotted the obtained spatial pattern vectors in Fig. 4.
We used sixteen spatial filters (eight for Q̃ and eight for
R̃), so there are sixteen spatial pattern vectors corresponding
to each spatial filter. Among these vectors, we only plotted
the vector with the maximum discriminability, showing the
largest difference between the feature values for L and R.
To evaluate the difference, we used Welch’s t-test again. We
measured the feature vectors z′n for each trial, and collected the
vectors for each class as Zn∈L ∈ R16×20 and Zn∈L ∈ R16×20

(NL = NR = 20). From each row of Zn∈L and Zn∈R, we
calculated the mean and variance, then measured t value by
(8). We selected the spatial filters with the highest and lowest
t value, then plotted their corresponding spatial pattern vectors
in Fig. 4 with the distributions of obtained feature values z′n.

We could see that the pattern vectors corresponding to the
highest t value (in the left column) emphasize the right side
of the posterior region, while the vectors corresponding to the
lowest t value (in the right column) emphasize the left side of
the same region. As we mentioned in the previous subsection,
this pattern is in agreement with the neurological background
about somatosensory cortex. In Fig. 4, the symmetry between
the results in each column was clearer than the results in Fig.
2, and the separability between the feature points for each class
was also enhanced than the results in Fig. 3.

We also denoted the classification accuracy from fivefold
cross-validation test in Table I, to identify the performance
improvement from the CSP approach. Although, CSP made
clearly separable clusters for each class in Fig. 4, it could not
achieve clear performance improvement in the test.

IV. CONCLUSION

In this study, we examined the difference of the spatial
patterns between SSSEP for two different attentions: attention
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Fig. 4. Spatial patterns from CSP

to the tactile stimulus on 1) the left hand, and 2) the right
hand. Experimental results showed that the attention to one
hand decreases the amplitudes of the given frequency in the
contralateral side, especially in the posterior region. Next
experiment showed that CSP can emphasize this spatial pattern
change with achieving better separability in the feature space
for the classification. We believe this observation will be
beneficial for evaluating the adaptability of users to SSSEP-
based BCI, or designing novel algorithms or methods.
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