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Abstract— A stochastic blockmodel is a generative model
for blocks, where a block is a set of coherent nodes and
relations between the nodes are explained by the corresponding
pair of blocks. Most existing methods make use of both the
presence and the absence of links between nodes, encoded by
the adjacency matrix, to learn the corresponding models. In
this paper, we present a new method in which we use only the
presence of links to learn the model, exploiting the dependency
between source and destination nodes, leading to a dependent
stochastic blockmodel. We allow for mixed membership and
the degrees of nodes in our dependent stochastic blockmodel.
Experiments on the political books network and Twitter social

network indicate that the behavior of our dependent stochastic
blockmodel is superior to that of existing methods.

I. INTRODUCTION

A network is an efficient way to describe relational data in

the real world. Entities and their relations are conceptualized

as nodes and edges in networks. Networks are often sim-

plified by using only a few essential characteristics of nodes

and edges. In this way, although some subsidiary information

is lost, we get valuable insights about networks, model them

in a manageable form, and prevent overfitting.

Clustering is one such approach. It concentrates on the

fact that nodes are often divided into subsets with similar

characteristics. For example, in social networks, we can know

much about a person if it is known about his/her job, religion,

family, hobby, or location. These pieces of information would

help us to determine clusters. Clustering creates proper

subsets of nodes, based on the algorithm. Classical clustering

is based on the assumption that similiar nodes are more likely

to be connected. Some clustering methods are extended to

let nodes belong to multiple clusters using a mixture model

or allow both assortative and disassortative relations between

clusters [1] (see Fig. 1). Still, clustering does not learn about

the interactions in and between the clusters.

A blockmodel is a model that describes subsets of nodes

with similar characteristics [2], [3]. It does not matter if

network is assortative, disassortative, or even any mixture

of them, because blockmodel also models relations in and

between the subsets. This results in higher accuracy of

prediction. The subsets of nodes in blockmodel are called

blocks. They are mutually exclusive and collectively exhaus-

tive subsets of a complete node set, where nodes in identical

blocks have homogeneous patterns of link generation. Using
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a blockmodel, we can predict unobserved links or generate

a synthetic network.

(a) Assortative blocks (b) Disassortative blocks

Fig. 1. Block structures with two blocks

A blockmodel learns two kinds of parameters: the affilia-

tion of nodes to blocks and the relationship between blocks.

Relationships between blocks determine the edges between

the nodes affiliated to each block. These parameters are

matrices with an element for each node-node and node-block

pair, i.e. if there are N nodes and K blocks, there is a K×N
matrix for affiliation of nodes to blocks, and a K×K matrix

for relations between blocks. Each element of the K × K
matrix indicates the probability of link existence in and

between the blocks, and thus it captures any relation between

blocks with almost no limitation: not only assortativity and

disassortativity, but also any combination of them. It makes

the relations between blocks flexible, and improves the

representation of each block’s characteristics. Furthermore,

it is efficient because it does not require knowledge of each

node-to-node interaction pattern, but only block-to-block and

node-to-block interactions.

Initially, a blockmodel was hypothesized as a deterministic

relation between blocks [4]. The relationship between blocks

was represented as either 1 or 0, where 1 signified links and

0 the absence of links. In this model, each node belonged to

exactly one block. Therefore, any two blocks with 1 as their

relationship had edges on every possible node pair between

them.

Stochastic blockmodels were subsequently introduced [5],

[6]. They changed the deterministic relationship between

blocks and adopted the probability to generate links. In

a stochastic blockmodel, links are drawn from Bernoulli

distribution with the relations between blocks as parameters.

However, each node still belonged to one block determinis-

tically.

In a further step, variance of degrees was introduced [7],

[8], [9], [10]. Variance of degrees is an important feature

of networks, and has even been highlighted for its scale-free

characteristic and link prediction accuracy [11]. Blockmodels



that have no degree variance sometimes clusters the nodes

according to their degrees in networks with high degree

variance of nodes. This results in an erroneous community

structure and, of course, poor prediction results. Blockmodels

that have degree variance treat both block structure and

degrees with equal importance. Additional care for degrees

prevents the clustering according to the degrees of the nodes.

Node to blocks mixed-membership was introduced to

describe the phenomena of people often having multiple

roles. The mixed-membership stochastic blockmodel [12] has

enabled nodes to affiliate number of blocks with weights on

blocks. In this model, the blocks for each node are selected

independently, for N×N of every node pair. On the basis of

the selected blocks of each node pair, a link is drawn using

Bernoulli distribution.

However, it is a questionable idea that the blocks that

appear on an edge are chosen independently. When one meets

one’s colleagues, one does not act as their family member,

but as a colleague in the same field. In all the multiple social

roles one plays, one’s selection of a role is affected by the

other person’s role in the interaction. That is, one’s social

behavior pattern in each interaction is correlated with the

other’s social behavior pattern in that interaction.

In this paper, we propose dependent stochastic block-

models in which we exploit the dependencies between the

chosen blocks by selecting the block of the destination node

based on the block of the source node. To encompass this

idea, we restructure our blockmodel to correspond to a

sequential process: from drawing the source node to drawing

the destination node, where each step is dependent on the

previous step. This process generates directed links, as the

source node actively reaches out, where as the destination

node passively receives links. The Twitter network is a good

example of such a process: a click by a follower is enough

to generate a link, without the followee taking any action to

generate that link. The process for voting, citation, and blog

hyperlink networks is similar.

As each process, from drawing the source node to the

drawing destination node, makes an edge, our model scales

linearly in the number of edges, for both learning and

generating networks.

Moreover, the process we propose naturally adapts both

degree-correction and mixed-membership concepts during

the drawing of nodes and blocks. Describing both charac-

teristics of a network not only results in a simple merging,

but also creates synergy in modeling networks. We describe

our experiments and results that demonstrate this in Section

IV.

The main contributions of this paper are summarized as

follows.

• We exploit source-to-destination dependency, allowing

the model to learn from only the presence of edges,

while most existing models make use of both the

presence and the absence of links between nodes.

• Our model allows for both degree-correction and mixed

membership, leading to degree-corrected mixed mem-

bership stochastic blockmodels, which describe net-

works more accurately.

The rest of this paper is organized as follows. Section

II reviews existing blockmodels. In Section III, we propose

concepts and algorithms for dependent stochastic blockmod-

els; in this section, the model’s extension and issues are

also covered. Section IV presents three experiments using

real networks to verify our proposed dependent stochastic

blockmodel.

II. RELATED WORK

In this section, we review existing blockmodels. The

standard stochastic blockmodel is presented first, and then

its extensions are presented with highlights on the additional

properties.

A. Standard Blockmodel

A blockmodel partitions the nodes in network into blocks

that are mutually exclusive and collectively exhaustive sub-

sets of nodes [4]. It assumes that the characteristics of

each node are well represented by the characteristics of the

block to which the node belongs. In a network, the only

characteristic a node has is its links. Therefore, we assume

that nodes in an identical block have a homogeneous link

generation pattern. Thus, in a blockmodel, node-to-block

affiliation and the interaction between blocks describes all

node-to-node interaction. The interactions between blocks

are recorded deterministically in standard blockmodels, with

1 signifying the presence of links, and 0 signifying the same

absence of links. In the standard model, nodes in the same

block are perfectly homogeneous: if there is a node s that

has a link with one of the nodes in the block, then all the

other nodes in the block have a link with node s, and vice

versa.

Stochastic blockmodels [5], [6] change the deterministic

relationship stochastically. The relationships between blocks

(B) are presented as an N × N matrix in which each

element signifies the probability of a link between two

blocks. Bernoulli distribution is used to draw links between

nodes. In a stochastic blockmodel, nodes in the same block

are stochastically equivalent. That is, if s and s′ are two

nodes in the same block, the probability of a link existing

between s and d is the same as that between s′ and d, for any

node d. However, node-to-block affiliation is deterministic.

Affiliation vector zs is a binary vector that denotes the block

membership of each node s with one element that states that

the affiliated block is 1, while other elements are 0.

In this model, we represent relational data as a network

G = (N ,A), where A is an adjacency matrix. Z is a K×N
matrix in which each column is an indicator vector for the

block to which each node belongs. The probability of the

network is calculated by drawing a link for every node pair.

p(A|B,Z)=

N
∏

s=1

N
∏

d=s

(zT
s Bzd)

As,d(1− zT
s Bzd)

1−As,d . (1)



B. Degree-Corrected Stochastic Blockmodel

Degree variance is one of the most important features

of networks, including social networks [11]. Some of the

degree variations are explained by the relationship between

blocks, but there are variances even in the nodes in the same

block. Furthermore, the blockmodels without degree variance

sometimes results fallacious blocks that were classified by

their nodes’ degrees.

A degree-corrected stochastic blockmodel [10] is a model

that adopts degree variance to blockmodels. This model was

developed for undirected networks with multi-edges. Degree

correction for each node is exploited by a new parameter

θ. It is used in calculating the number of links between

nodes s and d from Poisson distribution, where the expected

number of links is θsθdz
T
s Bzd. It is assumed that each node

is deterministically affiliated in one block, just as in standard

blockmodels. Therefore, zs and zd are binary vectors with 1

for the element that corresponds to the block to which nodes

s and d belongs. The probability of a link is not just a bare

relationship between groups, but is multiplied by θ of each

node, to encompass each node’s expected degree.

A degree-corrected stochastic blockmodel generates net-

works by drawing a number of links for every node pair. It

assumes that the number of links is independently Poisson

distributed, where the expected number of links between

nodes s and d is θsθdz
T
s Bzd. For convenience, calculation

of the probability of a network G under the degree-corrected

stochastic blockmodel is divided into two parts: probability

of links between blocks and probability of links within

blocks. The following is the probability of the entire network:

p(A|θ,Z,B)

=

N
∏

s=1

N
∏

d=s+1

(θsθdz
T
s Bzd)

As,d

As,d!
exp(−θsθdz

T
s Bzd)

×
∏

s

(12θ
2
sz

T
s Bzs)

As,s/2

(As,s/2)!
exp(−

1

2
θ2sz

T
s Bzs).

(2)

Although the degree-corrected stochastic blockmodel

draws a link for each node pair, its algorithm for learning

scales in number of nodes. Thanks to deterministic block

affiliation, the learning is done by choosing the most probable

block for each node, given blocks of all other nodes. Since

it chooses the best one, it converges quickly, but it might get

stuck in local maxima. Like the previous blockmodels, the

blocks of nodes on interaction are independent.

C. Mixed-Membership Stochastic

Blockmodel

People belong to several groups - family, school, work,

friends in various fields, hobby, etc. This contradicts the

assumption of the standard blockmodel that each node is

affiliated in exactly one block. Adopting this idea, the mixed-

membership stochastic blockmodel [12] extends classical

stochastic blockmodel by allowing nodes to be affiliated with

multiple blocks. Affiliation between nodes and blocks (Π)
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Fig. 2. Graphical representation of the mixed-membership stochastic
blockmodel.

does not deterministically record the affiliated block, but it

provides each node’s probability of affiliation to each block.

The mixed-membership stochastic blockmodel draws a

link for each node pair. The procedure begins with the

drawing of the affiliated blocks of two nodes. Given those

blocks, we draw link existence from Bernoulli distribution

on association between blocks (B). zs→d and zd←s are

indicator vectors for the chosen source and destination blocks

on the interaction between nodes s and d. In the original

mixed-membership stochastic blockmodel, B is given as a

parameter. We smoothed it to be drawn from beta distribu-

tion, as in [13]. A graphical model representation is in Figure

2. The corresponding procedure is given as:

• Choose Π ∼ Dir(α)

• Choose B ∼ Beta(β)

• For each node pair (s, d) ∈ N ×N

1) Choose a membership indicator for the source

node,

zs→d ∼ Mult(πs)

2) Choose a membership indicator for the destination

node,

zd←s ∼ Mult(πd)

3) Choose the existence of link,

As,d ∼ Bernoulli(zT
s→dBzd←s)

There are K ×K ways of block selection for each node

pair. If the link existence is right, different block selection

does not make any difference on the observed data. Accord-

ingly, the probability of each node pair is the summation of

the probability through all K ×K block pairs. The resultant

probability of a network is,

p(A,Π,B,Z→,Z←|α,β)

=
N
∏

s=1

p(πs|α)× p(B|β)

×
N
∏

s,d=1

p(zs→d|πs)p(zd←s|πd)p(As,d|zs→d, zd←s,B).

(3)

In addition to the parameters above, the sparsity parameter

ρ is used to down-weight the probability of links. Some of the

absent links actually exist, but are unobserved. These links

should not be explained by the model, and the weight of the
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Fig. 3. Graphical representation of the dependent stochastic blockmodel
for two-mode network.

unobserved links is captured by ρ. The probability of a link

given two membership indicators zs and zd is reevaluated

as ρzT
s Bzd.

III. DEPENDENT STOCHASTIC

BLOCKMODEL

In this section, we describe the dependent stochastic

blockmodel. The new structure we propose for the dependent

stochastic blockmodel deals with the source and destination

nodes separately, which matches two-mode networks. Thus,

first we develop the model for directed two-mode networks;

further, in Section III-A, we specialize it with minor changes

for one-mode networks. Some issues related to our model

are dealt with in Section III-B. In this section, we focus on

unweighted and directed networks without multi-edges.

A dependent stochastic blockmodel is a generative prob-

abilistic model that, captures dependencies between blocks.

To reflect the dependency between a source and destination

node, we restructure the process of generating an edge. In

our model, each edge is generated by sequentially drawing

the source node, source block, destination block, and then

the destination node, conditional on the previous variable.

The step of drawing a destination block that is conditional

on the source block captures the dependency between the

blocks. Moreover, the step of drawing a source node reflects

degrees, and drawing a destination node reflects degrees that

are conditional on the destination block. In addition, a source

block is drawn from a source node using mixed-membership.

It is notable that a dependent stochastic blockmodel does

not have isolated degree and mixed-membership terms; it

naturally mixes them.

Since a dependent stochastic blockmodel deals with source

nodes and destination nodes separately, this model provides

explanations of two-mode networks. A two-mode network is

a network where the vertices are divided into two disjoint

subsets, and edges connect vertices in different subsets.

Thus, source nodes and destination nodes have different

characteristics.

In a dependent stochastic blockmodel, the node sets are

further defined as a source node set and a destination node

set, where every edge is initiated from the source node set

and reaches out to the destination node set. N1, N2 and

K1,K2 are used to denote the number of nodes and blocks

in each node set.

The following is the procedure used to generate a network

in a two-mode network, with corresponding graphical model

in Figure 3. Π is a K1 × N1 matrix that represents the

probability of each source block being conditional on the

source node, and Φ is a K2×N2 matrix that represents the

probability of each destination node being conditional on the

destination block. B is a K1 ×K2 matrix that denotes the

probability of each destination block given a source block.

Π,Φ, and B are drawn from Dirichlet distribution. vs and

vd are binary indicator vectors for source and destination

nodes, and zs→d and zd←s are binary indicator vectors for

source and destination blocks on the interaction between

nodes s and d. We assume that ω, the out-degree of nodes

in the training data, is given.

• Choose Π ∼ Dir(α)

• Choose B ∼ Dir(β)

• Choose Φ ∼ Dir(γ)

• For each edge (s, d) ∈ Y

1) Choose a source node indicator,

vs ∼ Mult(ω)

2) Choose a membership indicator for the source

node,

zs→d ∼ Mult(Πvs)

3) Choose a membership indicator for the destination

node,

zd←s ∼ Mult(zT
s→dB)

4) Choose a destination node indicator,

vd ∼ Mult(zT
d←sΦ)

The new link generation procedure requires a new def-

inition of the relationships between blocks. In the exist-

ing blockmodels, the relationship between blocks is the

probability of a link between two blocks. In our model,

the relationship between blocks, which is each row of B,

is redefined as the probability of choosing each block as

a destination block, given the source block. This section

illustrates a natural dependency between blocks, that is, each

node’s choice of block depends on the other node’s block.

Degree variance and mixed-membership are required two

times each. Degree variance is used to select nodes. In step

1, since we do not have prior knowledge of the link, nodes

are drawn completely by their probability to initiate a link

ω. In step 4, however, since we know the block to which a

selected node belongs, selection is done by the multinomial

distribution with zT
d←sΦ, which is the probability of each

node given a destination block.

Mixed-membership is used on the relationship between

nodes and blocks in steps 2 and 4. Step 2 is purely about the

mixed-membership of each node using the latent variable Π.

However, step 4 indirectly encompasses mixed-membership

to give positive probability for all block-node pairs using

latent variable Φ.

The proposed procedure naturally scales in the number of

edges (E). This is a very useful characteristic because most

real networks are very sparse. The algorithm gets much faster

as there are fewer links for each node. In the typical case

of a sparse network, E is several constant times the number



of nodes. However, we do not lose much information by

ignoring the absence of links. Links in sparse matrices embed

much information because they are rare with high perplexity.

Furthermore, we cannot distinguish between absent links and

unobserved links, which leads to erroneous no-link cases.

The joint probability of a network G = {V ,Y }, where Y

is a set of edges, and the latent variable {Π,B,Φ,Z→,Z←}
is written in the following form:

p(Y ,Π,B,Φ,Z→,Z←|α,β,γ,ω)

=
N
∏

s=1

p(πs|α)
K
∏

k=1

p(bk|β)
K
∏

k=1

p(φk|γ)

×
∏

(s,d)∈Y

{

p(vs|ω)p(zs→d|vs,Π)

× p(zd←s|zs→d,B)p(vd|zd←s,Φ)
}

. (4)

We use collapsed Gibbs sampling algorithm [14], [15] to

learn the dependent stochastic blockmodel. Gibbs sampling

is an Markov chain Monte Carlo algorithm that simulates

approximate posterior distribution. After a sufficient number

of steps, it is expected that the states of the variables are

distributed according to the desired true posterior distribu-

tion. Therefore, the result asymptotically converges to the

true distribution, as it directly mirrors the algorithm.

Gibbs sampling algorithms require ergodicity, which is sat-

isfied by ensuring positive probability to get to any state. This

is ensured by the positive priors for Dirichlet distribution.

The prior values have one more function: proper diversity of

latent variables is tuned by their priors, because larger prior

results in higher probability of selecting unlikely blocks.

We use collapsed Gibbs sampling, marginalizing out Φ

and B, which is summarized in Algorithm 1. nv→k and

nv←k denote the number of times node v belongs to block k,

and mk1→k2
indicates the number of times destination block

k2 is drawn from source node k1. S and D represent the

blocks indicated by Z→ and Z←.

Algorithm 1 Learning dependent stochastic blockmodel

repeat

for i=1:E do

(s, d) is ith edge in Y

for k = 1 : K1 do

p(k)← (nqi
s→k + αk)×

mqi
k→D+βD∑

K
k2=1

mqi
k→k2

+βD

end for

S ← draw from Mult(p)
for k = 1 : K2 do

p(k)← (mqi
S→k + βk)×

nqi
d←k+γd∑

N
v=1

nqi
v←k

+γd

end for

D ← draw from Mult(p)
end for

until Convergence
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Fig. 4. Graphical representation of the dependent stochastic blockmodel
for a one-mode network.

A. Special Case: One-Mode Network

In this section, we describe the dependent stochastic block-

model for a one-mode network. A one-mode network is a

network where each node acts as both source and destination.

Thus, based on the assumption that each node’s interaction

as source node and destination node are homogeneous,

characteristics of each node are learned from both source and

destination node cases, which requires mergence of source

and destination cases. A social network between people and

a co-authorship network among authors are examples of one-

mode networks.

The major difference between the dependent stochastic

blockmodel for a two-mode and a one-mode network is

the use of latent variables Π and Φ. We assume that

the characteristic of each node is homogeneous on both

roles as source and destination node, to describe each node

consistently. Hence, one latent variable Π in the dependent

stochastic blockmodel for a one-mode network replaces both

Π and Φ in the dependent stochastic blockmodel for a two-

mode network.

Π is a K × N matrix, and it denotes the relative fre-

quency of affiliation of nodes to blocks, exploiting mixed-

membership and the degree of each node. With normaliza-

tion, each columns of Π represents the probability of each

source block conditional on the source node, and each rows

of Π represents the probability of each destination node

conditional on the destination block. The definition of B

remains unchanged.

The link generation procedure in the dependent stochastic

blockmodel for a one-mode network remains similar to that

of the two-mode network case: we start with the drawing

of the source nodes, and end up with the drawing of the

destination nodes. The procedure, probability, and algorithm

of the dependent stochastic blockmodel for a one-mode

network requires mere changes. The dependent stochastic

blockmodel for a one-mode network assumes the following

generative process (Figure 4):

• Choose Π ∼ Dir(α)

• Choose B ∼ Dir(β)

• For each edge (s, d) ∈ Y

1) Choose a source node indicator,

vs ∼ Mult(ω)

2) Choose a membership indicator for the source



node,

zs→d ∼ Mult(Πvs)

3) Choose a membership indicator for the destination

node,

zd←s ∼ Mult(zT
s→dB)

4) Choose a destination node indicator,

vd ∼ Mult(zT
d←sΠ)

The joint probability of the model is

p(Y ,Π,B,Z→,Z←|α,β,ω)

= p(Π|α)

K
∏

k=1

p(bk|β)

×
∏

(s,d)∈Y

{

p(vs|ω)p(zs→d|vs,Π)

× p(zd←s|zs→d,B)p(vd|zd←s,Π)
}

. (5)

B. Side Issues

In this section, we deal with three side issues arising

from the dependent stochastic blockmodel. The issues are

1) application of the dependent stochastic blockmodel to

undirected graphs, 2) possibility of generating duplicate

nodes, and 3) learning from absent edges.

The first issue is how to use dependent stochastic block-

models for the undirected networks. The dependent stochas-

tic blockmodel was developed for directed networks: to

describe dependency between blocks. However, we can easily

adopt this model to undirected networks. This is because an

undirected link is also defined as a bilateral link. By replacing

each undirected edge {s, d} with two directed edges {(s, d),
(d, s)}, an undirected network is changed into a directed

network to which the dependent stochastic blockmodel can

be applied.

The second issue is the fact that we may encounter

duplicate links when the dependent stochastic blockmodel

generates a network. As each edge independently selects

its source and destination nodes, there is the possibility of

duplicate links. However, the probability of such a duplicate

link (s, d) is negligible. By rough calculation, the expected

probability of drawing a source node from ω is about 1/N1,

and that of drawing a destination node from zd←sΠ is also

about 1/N2. The number of edges (E) of a sparse matrix

is expected to increase by about the order of the number of

nodes, thus the expected number of duplicate links in the

scale of N × 1/N2 = 1/N , which linearly decreases as

the number of nodes increases. For large-scale networks, the

probability of such a situation occurring is low enough to

ignore [10], [16].

IV. EXPERIMENTS

In this section, we present the experiments conducted on

three sets of data to verify the efficacy of the dependent

stochastic blockmodel for link prediction and node cluster-

ing. In Section IV-A, the model is tested to detect blocks.

An application to the Twitter network, described in Sectin

IV-B, tests the model on prediction links.

A. Books about US politics

In this experiment, our objective was to detect the political

preferences expressed in the political books sold online by

the bookseller Amazon (Amazon.com) around the time of

the 2004 presidential election in the United States[17]. Each

book was in one of three categories: ”conservative,” ”liberal,”

or ”neutral.” Accordingly, we grouped the books into three

(”conservative,” ”liberal,” or ”neutral”) or two (”conserva-

tive” or ”liberal”) categories. To compare the results of

the dependent stochastic blockmodel (DSB) with existing

blockmodels, we also ran the degree-corrected stochastic

blockmodel (DCB) and the mixed-membership stochastic

blockmodel (MMSB). Furthermore, we compared the latent

Dirichlet allocation with threshold noise filtering after two-

step labeling (filter-2step LDA) which improved accuracy of

topic identification over standard LDA [18].

The number of blocks (K) was set at 2 or 3. The parameter

values were α = 1, β = 2. For MMSB, we set ρ as 1 −
100E/N2. For filter-2step LDA, we considered nodes with

more than 10 degree as popular books, and filtered out less

than 0.05 probability as noise.

The expected blocks and topics that resulted from these

models after 200 iterations were compared with the truth

blocks to verify the reliability of each model. Though the

links in this network are undirected, which is equivalent

to two directed links that share end nodes with a different

direction, DSB and LDA learned each edge as a directed

edge to avoid DSB having an advantage.

True positive (TP) and false positve (FP) values are used to

check the accuracy of each model. For example, true positive

value of conservative category is the number of books where

both expected and true categories are conservative, while

false positive value of conservative category is the number of

books where the expected category is conservative, but the

true category is not.

DSB outperformed the other models as shown in Table I.

In the K=3 cases, DSB resulted in a total TP of 88. DCB

and filter-2step LDA resulted in lower values of 85 and 83.

However, MMSB grouped 82 out of 105 nodes into one

block, resulting in a total TP of 42. This is due to the degree

divergence of the nodes, which is not modeled by MMSB.

When we learned the network with K=2, DSB and LDA

still clustered the network well with total TP of 87, by al-

lowing neutral books to have a similar tendency of belonging

to the conservative and liberal category. On the other hand,

there was a significant difference between DSB and DCB.

DCB became confused by the neutral books that have links

from and to both conservative and liberal books, yielding a

result that resembles a random result.

Furthermore, as DSB does not select the block of each

node deterministically and instead learns its tendency as

probability, it is possible to find neutral books using DSB

with K=2, by grouping the nodes with a tendency lower

than 80% to either block as neutral. The scheme results were

slightly less accurate than those of DSB for K=3, but were

better than those of DCB and LDA for K=3. Therefore, we



can conclude that DSB describes the degree divergence and

the vague difference between blocks well, even with a non-

optimal K value.

TABLE I

TRUTH AND EXPECTED BLOCKS OF POLITICAL BOOKS. 2*: LEARNED

WITH K=2, AND THEN NODES WITH A TENDENCY LOWER THAN 80% TO

EITHER SIDE ARE GROUPED AS NEUTRAL.

Model K Conservative Liberal Neutral

Truth 3 49 43 13

1-mode 3 TP 41 38 9
DSB FP 3 2 12

2* TP 45 38 5
FP 8 1 8

2 TP 48 39 -
FP 14 4 -

DCB 3 TP 38 38 9
FP 2 3 15

2 TP 22 25 -
FP 25 33 -

MMSB 3 TP 36 5 1
FP 46 9 8

2 TP 40 8 -
FP 46 11 -

filter-2step 3 TP 39 35 9
LDA FP 2 3 17

2 TP 44 43 -
FP 13 5 -

B. Twitter Networks

Let us now look at the problem of predicting unobserved

links in a Twitter network. We crawled 1,500 twitter users

in July of 2012, using breadth-first-search on the following

lists. The crawling was restricted to the users who were

following less than 300 people, in order to except commercial

accounts. The data were refined by removing the users

who were following no one in this network. The resulting

Twitter network consisted of 1,385 users with 21,114 directed

following links. The links were randomly divided into 90%

learning data (19,003 links), and 10% test data (2,111 links).

We trained four network models and evaluated their

prediction accuracy. The four models were 1) depen-

dent stochastic blockmodel for one-mode network (1-

mode, DSB), 2) dependent stochastic blockmodel for two-

mode (2-mode, DSB), 3) degree-corrected stochastic block-

model (DCB), 4) mixed-membership stochastic blockmodel

(MMSB), 5) Latent Dirichlet allocation with threshold noise

filtering after two-step labeling (filter-2step, LDA) [18], and

6) preferential attachment (PA) [11]. The models ran until

50 iterations after convergence with both α (if it existed)

and γ as 0.1, β for the dependent stochastic blockmodel

as 30, and for mixed-membership stochastic blockmodel as

{30 × E/N2, 30 × (1 − E/N2)}. The users were grouped

into K = 10 blocks. For the mixed-membership stochastic

blockmodel, we put ρ = 1 − 100E/N2 to compensate

for sparsity. For the filter-2step LDA, we considered nodes

with more than 30 degree as popular users, and filtered out

less than 0.05 probability as noise. We included preferential

attachment to check the predictive power of the pure de-

gree information, where as the mixed-membership stochastic

blockmodel shows the predictive power of the blockmodel

with mixed-membership.

Each model chose the most probable 4,222 candidate links

(two times the number in the test data), and we compared

those links with the links in test data. The links that appeared

in the training data were excluded from candidate links. For

the models in undirected form, each candidate link was cho-

sen up to two times minus the number of times it appeared in

the training data. Fig. 5 illustrates how the network learned

for each model, with the maximum and average number

of edges predicted. Average number is calculated for 50

iterations after convergence.

The dependent stochastic blockmodel for one-mode net-

work outperformed the other models by predicted 387 links

in average. The dependent stochastic blockmodel for two-

mode network predicted 313 links in average, as it does not

use the assumption that each node’s property as source and

destination node are consistent. Degree-corrected blockmodel

and fiter-2step latent Dirichlet distribution predicted less

number of links, as they cannot simulate mixed-membership

or block structure.

The results for the mixed-membership stochastic block-

model and the preferential attachment were similar. The max-

imum number of predicted links was higher for the mixed-

membership stochastic blockmodel, but the preferential at-

tachment was better on average. This shows that the pure

mixed-membership blockmodel and degree heterogeneity has

similar predictive power in this network.

What is interesting is that the number of links predicted by

the dependent stochastic blockmodel exceeded even the sum

of the number of links predicted by the mixed-membership

stochastic blockmodel and the preferential attachment. This

shows that the mixture of mixed-membership block-structure

and degree heterogeneity resulted in a synergy that captured

the potential links that were not predicted by either concepts.
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Fig. 5. Number of matched links for the models over multiple iterations.
Links are matched between predicted links and test data. Average is
caculated on the 50 iterations after convergence.



To investigation further, we generated networks with

19003 links from the models trained in the previous ex-

periment. Figure 6 illustrates the 50 highest in-degrees of

real network and four networks generated with one-mode

assumption. The values are generally lower than those in

the trained network, because in the Twitter network, the in-

degree is more diverse than the out-degree. PA is a model

that concentrates on degrees, ignoring all other informations.

Thus, its degrees are closest to real degrees. On the other

hand, DCB, which has degree terms, makes a lower level of

in-degrees than PA. This is due to the blockmodel’s hypothe-

sis that each node is locked in a block, and thus hardly makes

any links to the blocks with which the belonging block rarely

links. This limitation forbids modeling hubs, viz., the nodes

that have a high degree and connect blocks.

DSB shows a level of in-degrees that is similar to that

of PA. This means that the nodes in DSB are not limited

by the block structure, because it allows each node to

be associated with multiple blocks. Furthermore, the DSB

network generates two to five nodes that have similar in-

degrees, making the graph step-shaped. As only a real graph

and DSB graph show a step-shaped in-degree graph, we can

conclude that our model illustrates a real network better than

the compared models.
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Fig. 6. Number of matched links for four models over multiple iterations.
Links are matched between predicted links and test data.

V. CONCLUSIONS

In this paper, we have presented a dependent stochastic

blockmodel where only the presence of links are used to

learn a model, exploiting the dependency between source and

destination nodes. Our model allowed for mixed membership

and the degrees of nodes. Experiments on the political books

network and Twitter social network demonstrated improve-

ments over existing stochastic blockmodels.
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