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ABSTRACT

A commercial web search engine shards its index among
many servers, and therefore the response time of a search
query is dominated by the slowest server that processes the
query. Prior approaches target improving responsiveness by
reducing the tail latency of an individual search server. They
predict query execution time, and if a query is predicted to
be long-running, it runs in parallel, otherwise it runs sequen-
tially. These approaches are, however, not accurate enough
for reducing a high tail latency when responses are aggre-
gated from many servers because this requires each server to
reduce a substantially higher tail latency (e.g., the 99.99th-
percentile), which we call extreme tail latency.

We propose a prediction framework to reduce the extreme
tail latency of search servers. The framework has a unique
set of characteristics to predict long-running queries with
high recall and improved precision. Specifically, prediction
is delayed by a short duration to allow many short-running
queries to complete without parallelization, and to allow the
predictor to collect a set of dynamic features using runtime
information. These features estimate query execution time
with high accuracy. We also use them to estimate the predic-
tion errors to override an uncertain prediction by selectively
accelerating the query for a higher recall.

We evaluate the proposed prediction framework to im-
prove search engine performance in two scenarios using a
simulation study: (1) query parallelization on a multicore
processor, and (2) query scheduling on a heterogeneous pro-
cessor. The results show that, for both scenarios, the pro-
posed framework is effective in reducing the extreme tail
latency compared to a start-of-the-art predictor because of
its higher recall, and it improves server throughput by more
than 70% because of its improved precision.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Search pro-
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Figure 1: (a) Web search engine architecture. (b) Execution
time distribution on Bing ISN.
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1. INTRODUCTION
The primary objective for a web search engine is to de-

liver relevant web documents to its users with consistently
low response times. A long response time degrades user sat-
isfaction and reduces revenues [26]. In particular, commer-
cial search engines optimize for reducing the high-percentile
(e.g., the 99th-percentile) response time, which is called the
tail latency. A short tail latency offers consistently fast re-
sponses to users, which is more important than the mean
response time in this context [9].

A web search engine partitions its large index across many
index server nodes (ISN). A search query runs concurrently
on the ISNs: Each ISN searches for best matches on its local
partition, and the results are aggregated, forming the query
results. In such a partition-aggregate scheme as depicted in
Figure 1(a), the response time at the aggregator is deter-
mined by the slowest ISN machine: A long latency at any
ISN manifests as a slow query response [9].

To reduce the aggregator tail latency, we need to reduce
a much higher tail at each ISN. For example, assuming the
aggregator has 40 ISNs, if we want to process 99% of user
queries within 120 ms, then each ISN needs to reply within
120 ms with probability around 0.9999. In other words,
for the aggregator to have 120 ms at the 99th-percentile
response time, the response time of each ISN must be at
most 120 ms at the 99.99th-percentile. This motivates our
goal of taming the extreme tail latency, namely very high-
percentile (e.g., 99.99th-percentile) latency, at ISNs.

Reducing the extreme tail latency is challenging because
the workload exhibits high variability. In Figure 1(b), we



measure query execution time using a production log of
user queries played on an ISN running a commercial web
search engine, Microsoft Bing. We find that most queries are
short-running: More than 80% take less than 10 ms. How-
ever, few queries are long-running taking more than 200 ms.
In particular, the average execution time is 9.1 ms while
the 99.99th-percentile execution time is 202 ms, which is 22
times the average. Therefore, to reduce extreme tail latency,
it is important to accelerate almost all long-running queries.
A long-running query that is not accelerated appears in that
tail latency. For a target of 120 ms at the 99.99th-percentile
response time, for every 10,000 queries we can miss only one
long-running query!

There are a few proposals to accelerate query process-
ing by parallelization [15]. However, it is too expensive to
parallelize all queries: Executing a query in parallel con-
sumes more resources than sequential execution, motivating
the need to predict the long-running queries. Recent ap-
proaches [16, 20] predict query execution time using query
and index features. The prediction is used to process long-
running queries in parallel and to run short-running queries
sequentially [16]. However, these approaches cannot meet
our target accuracy — according to our workload, to reduce
the 99.99th-percentile latency, we need a predictor with tar-
get recall of 98.9% to correctly identify most of the long-
running queries, and with good precision to reduce the over-
head of accelerating the short-running queries misidentified
as long-running.

In this paper we develop and evaluate a prediction frame-
work for reducing the extreme tail latency. The prediction
framework identifies the long-running queries, and achieves
high recall with good precision by delaying prediction to
exploit runtime information. First, since most queries are
short-running, delaying prediction (e.g., by 10 ms) enables
many short-running queries complete without ineffective ac-
celeration. Second, and more importantly, as the query ex-
ecutes during this short duration, we observe the runtime
behavior and identify a new set of features, which we call dy-
namic features, to improve prediction accuracy of estimated
time. Finally, we predict estimated prediction error [4] to
override an uncertain prediction by selectively accelerating
the query for a higher recall.

We call our predictor DDS, which stands for Delayed,
Dynamic, and Selective prediction. The framework has
three characteristics: (1) Delaying the prediction, (2) ex-
ploiting Dynamic features, and (3) Selectively accelerating
a query based on its predicted execution time and estimated
prediction error. DDS achieves our target recall of 98.9%,
while improving precision by 957% compared to a state-of-
the-art predictor [16] that uses static features only.

We evaluate DDS in two scenarios and use simulation to
assess its benefits:

• Query parallelization on a multicore server. We par-
allelize long-running queries to reduce tail latency and
run short-running queries sequentially to avoid their
parallelization overhead.

• Query scheduling on a heterogeneous server. We
exploit the emerging heterogeneous processor design
which combines energy efficient slow cores with high-
performance fast cores. We execute the long-running
queries on fast cores to reduce the tail latency and ex-

ecute short-running queries on slow cores to improve
throughput.

Our experiments compare DDS with two baselines: (1)
a no-prediction baseline, which accelerates all queries in or-
der to meet the desired latency, and (2) a state-of-the-art
predictor, which we call S, that uses static features [16].

Our results show that, for both scenarios, DDS reduces
tail latency for a wide range of load at the ISN and at the ag-
gregator, while the baselines fail to meet the latency target
at moderate and heavy load. To meet the desired 99.99th-
percentile response time of 120 ms, the no-prediction ap-
proach needs to accelerate all queries, and S accelerates
83.5% of queries. In contrast, DDS accelerates only 7.9% of
all queries because of its improved precision. As DDS signif-
icantly reduces the number of queries to accelerate, sparing
their corresponding overhead, it increases system through-
put by 74% from less than 390 QPS (queries per second)
of baselines to more than 680 QPS, potentially saving more
than 43% of servers required to process the same workload.
As commercial search engines use thousands of servers, DDS
presents an opportunity for significant server cost savings.

The main contributions of this paper are the following:

• We propose DDS, a prediction framework that exploits
delayed prediction, dynamic query features, and selec-
tive acceleration (Section 3).

• We train and evaluate DDS using production query
log and web index. At the target 98.9% recall, it
shows 957% improvement in precision compared with
the prior work using static features (Section 4).

• We assess the benefits of using DDS in a simulation
study of two query acceleration techniques: query par-
allelization on a multicore server and query scheduling
on a heterogeneous server. DDS effectively reduces ex-
treme tail latency at moderate and heavy server load,
and significantly increases throughput by 74% com-
pared to prior work (Section 5).

2. BACKGROUND
In this section, we briefly describe the architecture and

query processing of a web search engine.
Modern search engines, including Bing, consist of aggre-

gators and multiple index server nodes (ISNs) as shown in
Figure 1(a). Billions of documents are partitioned into hun-
dreds of disjoint subsets, each of which is served by a single
ISN. For higher efficiency, the subset of documents are con-
structed as an inverted index, where documents are sorted
using a static score such as PageRank. When query is re-
ceived, an aggregator broadcasts it to multiple ISNs if the
results are not cached. A query traverses posting lists of
each ISN to match documents, and computes the relevance
scores of the matched documents. The aggregator collects
the top-k documents for each ISN, and re-ranks the returned
documents for the final list [6]. For the entire query process-
ing, the main index of Bing follows a Document-at-a-time
(DAAT) [5] strategy, where all posting lists are intersected
for a multi-term query and a matched document is scored
before exploring the next matched document.

The ISN is a multi-threaded server, capable of processing
several queries concurrently for higher efficiency. Queries
sent from the aggregator first join the waiting queue of the



Table 1: Static features in previous work [16].

Category Feature Description

term feature IDF inverse document frequency
English Query in English or not (binary)

NumAugTerm # augmented requirements
Complexity Degree of query complexity

query feature RelaxCount Relax count applied or not (binary)
NumBefore # terms in the original query
NumAfter # terms after query rewriting

Table 2: Dynamic features.

Feature name Short Description

MaxDynScore Maximum of dynamic scores
MinDynScore Minimum of dynamic scores
SumDynScore Summation of dynamic scores
AvgDynScore Average of dynamic scores
VarDynScore Variance of dynamic scores

NumCurrentMatchDoc # matched documents
NumEstMatchDoc Estimated # matched documents
FirstMatchingTime First match time
AvgMatchingTime Averaging match time

ISN. When a worker thread becomes available, it starts ex-
ecuting a query from the head of the waiting queue. The
query response time consists of waiting time and execution
time. The waiting time is the amount of time a query spends
in the waiting queue before query processing, which is highly
related to system load (i.e., the number of queries per sec-
onds). Execution time is the amount of time to find the
top-k relevant documents for a query, which is a major por-
tion of response time unless system load is very high.

Dynamic pruning strategies [5, 29] have been proposed to
reduce query processing time. While traversing the posting
lists, the matched documents are dynamically scored by a
complex scoring function with inputs such as the document
static score, the number of query terms occurred in a doc-
ument, location of query, among others. Since this score
is obtainable only when a query is executed, we call it dy-
namic score. To terminate query processing, the dynamic
score of future matches is estimated. If the estimated dy-
namic score is sufficiently low compared to the current best
documents, the future matches are unlikely to supersede the
current matches. Query processing is early-terminated and
the top-k matched documents are sent to the aggregator.

3. PREDICTION FRAMEWORK
This section develops a prediction framework, designed

to accurately identify long-running queries to reduce tail la-
tency. To meet the goal, we first derive the accuracy re-
quirements of the predictor. We next introduce the DDS
prediction framework, with delayed, dynamic, and selective
prediction, and discuss the design choices.

3.1 Requirements
We derive the accuracy and performance requirements to

meet the 99.99th target percentile response time, in terms
of precision and recall defined as follows:

precision =
|A ∩ P |

|P |
recall =

|A ∩ P |

|A|
, (1)

where A is a set of true long-running queries, P is a set of
predicted long-running queries. Precision means how many
queries are predicted as long-running and recall means how
many long-running queries are correctly identified. We de-

fine a query as true long-running if its execution time is
greater than a given value T (e.g., T = 100 ms), which is
determined by SLA of the web search engine. To meet a tail
latency of 120 ms, we choose T = 100 ms, i.e., we want to
accelerate queries with execution time greater than 100 ms.
We do not choose T = 120 ms because queries can incur
waiting times, which also increase query latency.

We illustrate how to compute the recall target by an-
alyzing the query workload. Using Bing query log, we
find that 0.92% of queries are long-running (their execu-
tion time is greater than T = 100). Therefore, recall
should be at least 98.9%, because the number of the remain-
ing long-running queries (misidentified as short-running) is
0.0092 ∗ (1− 0.989) = 0.0001 of all queries, which is accept-
able to optimize the 99.99th target percentile latency.

At this recall target, precision should stay high because
the falsely predicted long-running queries consume unneces-
sary resources for acceleration. Improving precision is im-
portant: We show that under heavy load, we cannot reduce
the tail latency without improved precision in Section 4.2.3
and 5.

Finally, the overhead involved in performing prediction
must be small. Prediction adds additional work to query
execution, increasing query response time. Since the average
execution time of queries whose execution time is larger than
10 ms is 28 ms, adding 5% of it for prediction is a relatively
small cost for the potential benefits. Here, we set the goal
of less than 1.4 ms to predict query execution time.

3.2 Prior Work and its Limitation
We first review state-of-the-art predictor [16], which we

call S as it uses Static features for prediction.
Static features are essentially statistics on terms and

queries, based on which we can estimate the number of doc-
uments to be matched while applying early termination al-
gorithms [5, 29]. Table 1 lists “memory-efficient” features
(called “cheap features”) to meet accuracy requirement with-
out requiring a large memory footprint. Specifically, term
feature, such as IDF score, is computed per query term,
which is then combined into a single feature. Query features
represent the complexity of queries, incurred from query per-
sonalization, relaxation, and rewriting.

We argue that S cannot meet the desired accuracy of re-
ducing the extreme tail latency. In particular, S achieves
a recall of 69.5% and precision of 80.3%. This recall is not
high enough to reduce the 99.99th-percentile latency, which
demands a recall of 98.9%.

It is possible for S to trade precision for higher recall.
More precisely, S can predict a query as long-running if its
predicted time is larger than a time threshold α. Lowering
the time threshold α allows more queries to be identified as
long-running queries, improving recall but reducing preci-
sion. When the time threshold is small enough (i.e., α = 2.5
ms) for S to meet a recall of 98.9%, its precision drops to
1.1% only, which means we need to accelerate 83.5% of total
queries, introducing significant overhead with much higher
query latencies.

Our work investigates three techniques to improve the ac-
curacy of the predictor significantly to reduce the 99.99th-
percentile latency.

3.3 Delayed Prediction



We first propose delayed prediction, in which a query is
executed for a short period of time D (which we call D
delay threshold), then the prediction is made.

Delayed prediction exploits the workload characteristics
and introduces three advantages: (1) The majority of the
short-running queries are terminated within a very short
time. From our query log, 80% of queries take less than
10 ms. These short-running queries would not be falsely
identified as long-running queries, avoiding the overhead of
accelerating them. (2) It reduces the runtime overhead of
predicting those short-running queries, since these queries
would terminate before making prediction. (3) With the
short execution period, we can extract important runtime
information on query processing, allowing us to employ dy-
namic features.

We determine the delay threshold D empirically. Longer
delay allows most of the short-running queries to complete
without prediction overhead and permits more time to col-
lect dynamic signals, but prevents accelerating long-running
queries early on. We evaluate several choices for D in a sen-
sitivity study (Section 5.1.5), and choose D = 10 ms, which
gives the best performance.

3.4 Dynamic Features
As for the second technique, we propose DD (for Delayed

Dynamic prediction), employing dynamic features to en-
hance prediction accuracy. These dynamic features repre-
sent the runtime information of a query, which are collected
after we run a query for a little while.

These dynamic features capture the following crucial in-
formation for prediction, unavailable from static features.

• First, some information is unknown at indexing time
but affects query execution. Examples include the dy-
namic context of queries, including dynamic scores for
pruning, location or language preference.

• Second, some information is too large to be indexed
and stored in main memory. For example, “French
fries recipe” appear frequently together such that ag-
gregating the individual term features is inaccurate.
Indexing such correlation using a trigram index would
improve accuracy, their size is larger by orders of mag-
nitude than individual term index and typically re-
mains unindexed. Such correlation can be captured at
runtime after processing the query for a short duration.

We focus on two categories of runtime information:
matched documents and dynamic scores. Intuitively, when
the number of matched documents is high on an early seg-
ment of the inverted index, we expect many matches in the
entire index, indicating a long query. However, this indicator
alone is not sufficient because a query with potentially many
matches may terminate early without ranking all matches
[5, 29] (or the queries without many matches may run long
without such termination). We thus employ the informa-
tion on dynamic scores: if scoring distribution shows high
dynamic scores and small variance, the query is likely to ter-
minate early, leading to shorter execution time. Inspired by
these two complementary factors, we identify the following
nine novel dynamic features as shown in Table 2.

• DynScore: statistics of the dynamic score distribution
observed runtime (e.g., minimum, maximum, average,

β = 80 ms

α = 80 ms

α = 20 ms

Predicted latency

Predicted L1 error

Figure 2: Illustration of selective prediction, where a red
circle means a long-running query and a black triangle means
a short-running query.

variance, and summation.) For example, MaxDyn-
Score is the maximum of scores of the ranked docu-
ments at duration D.

• NumCurrentMatchDoc: the number of matched docu-
ments after D.

• NumEstMatchDoc: the estimation of total number of
the matched documents when query processing is done.
We adopt a simple linear estimate using:

#current matched documents

#processed documents
× # total documents,

where # total documents is the total number of doc-
uments managed by the ISN, which is in the scale of
hundreds of million in our evaluation.

• MatchingTime: the time to find the next matched doc-
ument. We use two features FirstMatchingTime and
AvgMatchingTime to represent MatchingTime of the
first document and its average respectively.

While dynamic features bring significant accuracy im-
provements, they are also inexpensive to obtain. Unlike
some static features that may increase server memory foot-
print and index size, the dynamic features are byproducts
of query processing and do not require main memory, which
is scarce resource at index servers.

3.5 Selective Prediction
As for the third technique, we propose DDS (for Delayed,

Dynamic, and Selective prediction), which exploits both ex-
ecution time prediction and error estimation to selectively
accelerate queries.

To motivate selective prediction, Figure 2 illustrates the
problem of existing prediction. In this figure, existing ap-
proach estimates predicted latency (y-axis) then acceler-
ates queries predicted to take longer than time threshold
α. To identify all long-running queries (marked by circles),
α should be set to 20 ms, which mis-predicts many short-
running queries (marked by triangles) as long-running, caus-
ing low precision. In particular, for the queries with small
prediction error, reducing time threshold can effectively im-
prove recall with little trade-off on precision. However, we
find that some mispredicted true long-running queries (with
large prediction error) compromise precision by introducing
many false positives.

For this reason, we extend our prediction framework to es-
timate not only latency but prediction error. More precisely,
we introduce an error threshold β and accelerate the queries
with predicted error greater than β. Back in our running



example in Figure 2, this enables us to accelerate two types
of queries: (1) the queries with estimated latency greater
than time threshold α = 80 ms and (2) the queries with es-
timated error greater than error threshold β = 80 ms. The
insight of selective prediction is that we keep time threshold
high based on prediction with low error, and accelerate the
queries with high predicted errors, so we will not miss those
long-running queries with large uncertainty on its predicted
execution time.

More specifically, we build two regressors, one of which
is for predicting latency and another for regression error.
The training set for the first regressor, f1, is constructed
as D = {xi, yi}

n

i=1, where xi is the i-th covariate and
yi is the i-th response variable. We use the covariate as
static with dynamic features, and the response variable as
execution time. The training set for the second regres-
sor, f2, is constructed by a validation set consisting of
V = {xi, y

err

i = |f1(xi)− yi|}
m

i=1.
A query is determined as a long-running query if the pre-

dicted execution time is larger than α or the predicted L1

error is larger than β. As shown in Figure 2, a query is
decided as long-running if it is in the blue shaded region.

Note that we adopt boosted regressor tree [12] to identify
long-running queries instead of a classifier (such as boosted
classification tree [12] or SVM), because the time threshold
T of defining long-running queries can be varied and the
accuracy of classifier is similar with the one of regressor.

3.6 Summary
To reduce 99.99th-percentile response time of web queries,

the predictor needs to achieve very high recall of 98.9% with
good precision. To meet these requirements, we propose
three important techniques: (1) delayed prediction to re-
move unnecessary short-running queries, (2) dynamic fea-
tures to achieve higher accuracy, and (3) selective prediction
that combines predicted execution time with the estimated
prediction error. We empirically evaluate our framework in
Section 4, and we show how to leverage the framework to
accelerate long-running queries in Section 5.

4. EXPERIMENTS
This section presents experimental results to validate the

accuracy and effectiveness of the proposed framework. We
conduct our evaluation using production index and query
log. Our results show the benefits of delayed prediction, dy-
namic features and selective prediction. We observe 957%
improvement in precision at the desired 98.9% recall com-
pared with the prior work.

4.1 Experimental Setup
We first describe the setting for evaluation. We play

69,010 queries from a production query log at 100 QPS
(queries per second) and measure their execution time. We
extract static and dynamic features of these queries to con-
struct a training and test set. In particular, we instrument
the code of query processing to log all dynamic scores of the
ranked documents, which we use to extract dynamic fea-
tures. For the static features, we follow the same procedure
introduced in [16]. To eliminate outliers, we execute the
same query three times and plot its minimum. We compare
DDS with S :

• S implements a predictor [16] using the static features
discussed in Section 3.2. This is our baseline.

Table 3: Top-10 feature importance of static + dynamic
features.

Feature Importance
NumEstMatchDoc 1

MinDynScore 0.7075
MinIDF 0.2767
VarIDF 0.2730

MaxDynScore 0.2662
SumIDF 0.2076

VarDynScore 0.1982
AvgDynScore 0.1831
Complexity 0.1791
NumBefore 0.1762

• Dynamic-Delayed-Selective (DDS) accelerates a query
when either its predicted latency ≥ the time threshold
α or its predicted L1 error ≥ the error threshold β.

We also introduce two intermediate steps from S to DDS,
which are used to illustrate the individual contribution of
each technique: delayed prediction, dynamic features, and
selective prediction.

• Static-Delayed (SD) uses the same static features as in
S, but makes a decision after D = 10 ms.

• Dynamic-Delayed (DD) delays prediction and uses
both static features and dynamic features that we pro-
posed in Section 3.2.

We use all 69,010 queries to evaluate S, and use 14,546
queries to evaluate delayed prediction frameworks including
DDS, SD, and DD, because only 14,546 queries are not ter-
minated after 10 ms. We use 10-fold cross validation (10
folds are randomly selected from a dataset) and repeat this
procedure 5 times and report the average number to prevent
biased results. We use boosted regression tree to predict the
execution time and regression errors, where we use 100 re-
gression trees.

4.2 Experimental Results
In this section, we identify which dynamic features are

important to predict execution time, and compare DDS to
S, showing the contribution of each technique: delayed pre-
diction, dynamic features, and selective prediction.

4.2.1 Importance of Dynamic Features

Table 3 shows the top-10 feature selection results, where
the importance is normalized by the highest value. The im-
portance of a feature is evaluated by per-feature gain from
the boosted tree, proportional to the total error reduction
per split in the tree. The results show that dynamic fea-
tures provide critical information on predicting query exe-
cution time: two dynamic features (NumEstMatchDoc and
MinDynScore) outrank most of static features in terms of
effectiveness. NumEstMatchDoc is most effective, being a
simple but powerful estimator for the number of documents
to be matched, which is highly correlated with the query
execution time. However, this alone cannot predict time, as
the query may terminate early depending on scoring distri-
bution for the query. Various summary of such distribution
(min, max, avg, and variance) thus play important and com-
plementary roles in prediction.
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Figure 3: Precision and recall curves of four approaches by
varying the time threshold α.

4.2.2 Low Prediction Overhead

As DDS delays prediction until a query runs for 10 ms,
80% of queries complete before that, and only 20% of queries
use the predictor to estimate their execution time. In addi-
tion, the runtime overhead of prediction is less than 1 ms,
which is less than 5% of the average execution time of these
queries that use prediction.

4.2.3 Improved Precision

Figure 3 compares precision recall curves for S, SD, DD
and DDS. All curves are obtained by varying the time
threshold α (smaller α trades precision for higher recall).
We set the error threshold of DDS to be β = 10 ms, which
we empirically find to be effective. For the target 98.9% re-
call (to reduce 99.99th-percentile latency), Figure 3 shows,
precision of S is about 1.1%, and DDS improves the pre-
cision to 11.63%, representing a 957% improvement over S.
The detailed contributions of delayed prediction, dynamic
features, and selection prediction are described next.

Contribution of delayed prediction (S versus SD):
Figure 3 shows that SD (Static-Delayed) improves the pre-
cision from 1.1% to 5.25% compared with S. SD consistently
outperforms S because 80% of queries terminate within 10
ms — SD saves prediction time and avoids prediction errors
for those queries.

Contribution of dynamic features (SD versus DD):
Figure 3 shows that DD (Dynamic-Delayed) improves the
precision from 5.25% to 9.46%, which confirms the useful-
ness of dynamic features. To evaluate the effectiveness of
dynamic features further, Table 4 shows the precision and
recall of SD and DD while varying α. We observe that
dynamic features consistently improve both precision and
recall in all settings. In addition, our target recall of 98.9%
is reached by DD when α = 20 ms, while not by SD in the
same setting.

Contribution of selective prediction (DD versus
DDS): Figure 3 shows that DDS improves the precision
from 9.46% to 11.63%, which validates the usefulness of se-
lective prediction. In other words, selective prediction in
DDS helps to identify long-running queries with large pre-
diction error, and produces less false positives than DD.

At the recall target of 98.9%, the difference in precision be-
tween DDS and S is significant with attendant performance
impact. For the query workload, we find that there are
0.92% of truly long-running queries. A precision of 11.63%
indicates that DDS identifies 7.9% (= 0.92%/11.63%) of all
queries as long-running, which is an affordable number to
accelerate. In comparison, to meet the same high recall, us-
ing the state-of-the-art prior work S has precision of 1.1%,

Table 4: Precision and recall comparison between SD and
DD with respect to varying α. We report each accuracy
value as ‘average (standard deviation)’.

Category SD DD

Precision (α = 100 ms) 80.3%(0.44%) 87.6%(0.84%)
Recall (α = 100 ms) 69.5%(0.44%) 78.4%(0.33%)
Precision (α = 60 ms) 59.6%(0.57%) 63.1%(0.45%)
Recall (α = 60 ms) 82.2%(0.33%) 88.9%(0.44%)

Precision (α = 40 ms) 35.7%(0.3%) 36.3%(0.36%)
Recall (α = 40 ms) 88.2%(0.3%) 93.7%(0.5%)

Precision (α = 20 ms) 8.3%(0.05%) 9.3%(0.03%)
Recall (α = 20 ms) 97.2%(0.4%) 98.9%(0.1%)

and thus identifies 83.5% of all queries as long-running, in-
curring a large cost — 9.57 times higher than DDS — in
order to accelerate them. We discuss implications of these
results in the next section.

5. USING DDS TO REDUCE TAIL LA-

TENCY
This section demonstrates how to use the proposed pre-

diction framework DDS to reduce the extreme tail latency.
The key idea is that DDS enables us to accurately acceler-
ate only the long-running queries to reduce tail latency with
affordable cost. We simulate the Bing search engine on two
scenarios: (1) to parallelize long-running queries on multi-
core servers and (2) to schedule long-running queries on fast
cores of heterogeneous servers. We evaluate the tail latency
of each index server node (ISN) as well as at the aggrega-
tor for a cluster of ISNs. The simulation results show that,
for both scenarios, DDS effectively reduces tail latency for a
wide range of load, while the existing solutions fail to meet
the latency target at medium and high load. At the desired
tail latency, DDS improves the server throughput by more
than 70%, potentially saving 44% search servers.

5.1 Query Parallelization
Parallelizing query processing on a search server is a po-

tential solution to reduce query execution time [27, 15]. This
is motivated by current hardware trends. A modern server
has several cores, and therefore, parallelization allows multi-
ple threads to execute a query concurrently using the avail-
able cores to reduce query execution time.

Choosing a parallelization strategy is challenging. When
servers are lightly loaded and there is sufficient number of
available cores, parallelizing the execution of all queries re-
duces their execution time, thereby reducing the response
time. However, parallelizing all queries is ineffective un-
der medium and high load because it comes with an over-
head that varies among queries. Long-running queries
achieve better speedup with lower overhead and higher
parallelization efficiency. In contrast, parallelizing short-
running queries is ineffective, giving no performance ben-
efit while consuming additional resources taken away from
long-running queries.

Figure 4 presents the measurement results on the paral-
lelization speedup of Bing queries with different execution
time (Figure 3 of [16]). The implementation details on how
to execute a web search query using multiple threads and
what causes the speedup/parallelism overhead are beyond
the scope of this paper. Interested readers may refer to
[16, 15]. The results show the queries that run longer than



80 ms achieve more than 4 times speedup by using 6 threads.
In contrast, using 6 threads, the short-running queries that
complete within 30 ms just achieve about 1.15 times of
speedup because their execution time is dominated by the
sequential part (i.e., non-parallelized part) of the query pro-
cessing. As the load increases, spare processor resources be-
come limited and we can no longer afford to parallelize all
queries. We thus parallelize long-running queries to reduce
the high-percentile response time, and execute short-running
queries sequentially to reduce parallelization overhead. We
use DDS to decide if a query shall be parallelized.
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Figure 4: Parallelization efficiency of short, medium and
long-running queries.

5.1.1 Experimental setup

Our experiments compare two techniques DDS and S. S
uses static features from prior work [16] to predict query ex-
ecution time before running the query and parallelizes the
predicted long-running queries with 4-way parallelism. DDS
runs a query for 10 ms sequentially and, if the query has not
completed by then, it uses dynamic features of the query
to predict query execution time and the prediction error.
DDS parallelizes the query with 4-way parallelism if it is
predicted as long running or if the prediction error of the
query is larger than the error threshold (as in Section 4.1).
Changing parallelism degree of a web search query at run-
time is supported by using fine-grained parallelism [10]. In
addition, we add the results of two more techniques as ref-
erences: sequential execution that runs each query sequen-
tially, and no-prediction that parallelizes all queries with
4-way parallelism.

We model a web search engine based on the architecture
described in Section 2 and simulate it using a Java-based
discrete-event simulator called DESMO-J [23]. The simu-
lation models an aggregator and its 40 ISNs; each ISN has
12 cores. We drive the simulation using production query
log, execution time profile (Figure 1(b)) and speedup profile
(Figure 4). Queries arrive following a Poisson process, and
we vary system load by changing the average arrival rate.
We report the average number of 5 runs and use error bars
to represent their standard deviation in the figures.

The proposed techniques target reducing the tail latency
at medium and high load, rather than across all load regions.
Notice that we operate Bing servers only at medium to high
loads: Light load means that the system is over provisioned
and load can be consolidated to use fewer server clusters;
Extremely high load means that system is under provisioned
and cannot meet the response time SLA for the tail latency,
and load should be balanced among more server clusters.

5.1.2 Response time reduction at ISN

Figure 5 compares DDS with sequential execution results
and two other parallelization approaches on (a) 99.99th-

percentile, (b) 99.9th-percentile, and (c) mean response
time. From the results we make three observations. First,
parallelization significantly reduces the tail latency. Specif-
ically, at light load (up to 350 QPS), all parallelization ap-
proaches reduce the 99.99th-percentile response time from
200 ms using sequential execution to 120 ms. Second, at
medium to high load (350–700 QPS), DDS still achieves the
same level of reduction, reducing the tail latency by 40%
over sequential execution. In contrast, no-prediction and S
have very high tail latency. Third, at extremely high load
(>830 QPS), sequential execution has lower response time
than the parallelized approaches as there is no free core avail-
able to run queries in parallel. However, we do not operate
our servers at such very high load which leads to violating
the response time SLA of 120 ms at 99.99th-percentile. The
results of 99.9th-percentile show similar trend. We also in-
clude the mean response time results for completeness.

Insights behind performance improvements. We
explain why DDS outperforms S at medium to high load:
DDS enables judicious utilization of cores to long-running
queries because of its higher precision.

In order to reduce 99.99th-percentile response time, we
have shown in Section 3.1 that a prediction algorithm needs
to achieve high recall of 98.9%. To obtain this recall, dif-
ferent prediction algorithms have different precision, which
implies the number of queries the algorithms identify as
long running (including both true long-running queries and
false positive ones). S has precision of 1.1%. As there are
0.92% of truly long-running queries, a precision of 1.1% in-
dicates that S identifies about 83.6% (= 0.92%/1.1%) of
all queries as long-running, among which, majority are false
positives. At light load, the parallelization overhead to ac-
celerate the false positive queries is tolerable as there are
available cores. However, when the load increases, these
false positive queries take away resources from real long-
running queries and their parallelization overhead prolongs
the waiting time of all queries, resulting in higher response
time. In comparison, DDS achieves the precision of 11.63%,
parallelizing only 7.93% (= 0.92%/11.63%) of queries, which
significantly reduces the number of queries to accelerate and
their corresponding overhead. Therefore, even at high load,
DDS still effectively reduces tail latency.

5.1.3 Contribution of three techniques of DDS

The performance improvement of DDS comes from its
three techniques — delayed prediction, dynamic features,
and selective prediction, and Figure 6 quantifies their indi-
vidual contributions. In particular, we add two intermediate
steps from S to DDS : Static-Delayed (SD), which delays pre-
diction but only uses static features, and Dynamic-Delayed
(DD), which delays prediction and uses both static and dy-
namic features, but without estimating prediction error.

To meet 120 ms SLA on the 99.99th-percentile response
time, Figure 6 shows the following: (1) SD outperforms S,
increasing throughput from 390 QPS to 600 QPS. The rea-
son is that 80% short-running queries complete within 10
ms, and the delayed prediction executes all of these short-
running queries sequentially without incurring unnecessary
overhead. (2) DD increases the throughput further to 650
QPS. The improvement comes from the improved prediction
accuracy: dynamic features increase precision to 9.46%, and
thus only 9.7% of the total queries need to be parallelized.
(3) DDS achieves the precision of 11.63% and offers a final
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(a) 99.99th-percentile response time
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(b) 99.9th-percentile response time
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(c) mean response time

Figure 5: Response time of sequential and three parallel query execution approaches at ISN.
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Figure 6: 99.99th-percentile response time for S, SD, DD
and DDS at ISN.

boost of throughput to 700 QPS by accelerating only 7.9%
of queries. It demonstrates the effectiveness of delaying the
prediction, using dynamic features, and estimating the pre-
diction error.

5.1.4 Sensitivity to different target percentiles

Figure 7(a) shows two observations when we vary the tar-
get response percentile: (1) For any given algorithm, in order
to optimize for higher percentile, the ratio of the predicted
long-running queries increases: trading precision for higher
recall. (2) DDS consistently outperforms the other schemes
for various target percentiles: for any given target, it re-
quires to parallelize the smallest number of queries as it
achieves the highest precision.
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Figure 7: Sensitivity study: (a) Ratio of the predicted long-
running queries with varying target percentile latency; (b)
Response time of DDS with various delay thresholds: D =
5, 10, 40 ms.

5.1.5 Sensitivity to delay threshold D

Figure 7(b) shows 99.99th response time for DDS with
various delay threshold D where DDS-5ms means that the
prediction is done after 5 ms of sequential execution. We
observe that 10 ms is a practically sufficient choice. The
99.99th response time for 40 ms is consistently larger than
10 ms for small-to-mid loads, because the true long-running
queries are delayed longer to be accelerated. The 99.99th
response time for 5 ms is larger than 10 ms at high load, be-
cause earlier prediction does not collect sufficiently accurate
dynamic information to achieve precision.

5.2 Latency Reduction at Aggregator
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Figure 8: 99th-percentile latency at an aggregator.

While previous results focus on latency reduction of each
ISN, this section evaluates the benefits of DDS on reducing
aggregator-level latency. An aggregator collects results from
all of its ISNs, and thus its latency is determined by the
slowest ISN. To reduce tail latency at the aggregator, we
need to reduce a much higher tail at each ISN. For example,
if the desired x = 99th-percentile latency is Q = 120 for an
aggregator with k = 40 ISNs, then each ISN needs to have
k
√

x/100× 100 = 99.975 ≈ 99.99 percentage of queries with
latency Q or lower, i.e., the individual ISN should have a
99.99th-percentile latency of Q = 120 ms or lower.1

We vary the number of ISNs and measure the 99th-
percentile response time at the aggregator. We evaluate two
approaches at 700 QPS, labelled DDS and S -99.9th. First
we employ DDS to reduce the 99.99th-percentile latency at
each ISN. Next, we introduce S -99.9th, which uses static
features to reduce 99.9th-percentile latency at each ISN. No-
tice that we do not use S -99.99th, the default scheme with
static features, which has higher recall but lower precision.

1We assume that ISNs operate independently since each ISN
works on a random hashed partition of web documents.



At 700 QPS, S -99.99th produces very high parallelism over-
head, and its latency substantially exceeds 200 ms (Figure
5). Finally, we plot the sequential results for reference.

Figure 8(a) shows how the aggregator latency of the three
schemes rises with increasing number of ISNs. We set the
target 99th-percentile of aggregator latency to be 120 ms.
At the extreme case of only one ISN for the aggregator, we
need to reduce 99th-percentile of that ISN, and the two ap-
proaches meet the goal. When the aggregator has 40 ISNs,
we need to reduce around 99.99th-percentile at each ISN —
S -99.9th cannot meet the goal any more. The results are
consistent with our analysis. Since in practice each aggrega-
tors has many ISNs, this experiment highlights the impor-
tance of reducing the extreme tail at each ISN server.

Figure 8(b) compares the aggregator 99th-percentile la-
tency for DDS and S -99.9th with varying load and with
k = 40 ISNs. The results show DDS outperforms the other
approaches, reducing the aggregator-level tail latency for
moderate and heavy load by 40% from 200 to 120 ms.

Throughput improvement. Using DDS to select
which queries to parallelize improves system throughput.
Figure 8(b) shows that, to meet 120 ms 99th-percentile la-
tency at the aggregator, DDS sustains arrival rates up to
700 QPS while the other schemes support up to around
390 QPS. DDS improves throughput by more than 70%.

Assume the search engine has a total workload of
X QPS, and each aggregator has k ISNs. Using DDS
requires X/700 × k servers while using fixed paralleliza-
tion needs X/390 × k servers: Here, DDS saves (X/390 −
X/700)/(X/390) = 44% of the servers to serve the same
workload. As commercial search engine uses thousands of
production servers, these savings are significant.

5.3 Scheduling on Heterogenous Server
A heterogeneous multicore processor is an emerging hard-

ware composed of cores with differentiated power and perfor-
mance characteristics, typically combining energy-efficient
slow cores with high-performance fast cores. All cores ex-
ecute the same instruction set, but they run at different
speeds — the faster the core, the more power it consumes.
Since power consumption increases faster than speed, a fast
core executes a request in less time than a slow core, but con-
sumes more energy. There are several proposals for hetero-
geneous processors [18, 2, 7], e.g., ARM recently announced
their big.LITTLE processor for production [13].

We exploit the prediction results of DDS to improve
search engine performance on the emerging heterogeneous
hardware. Prior work [14] shows that, as ISNs of web
search have CPU-intensive workload, a high-performance
(fast) core completes a query with less time than an energy-
efficient (slow) core but consumes more energy. We acceler-
ate the predicted long-running queries using fast cores and
execute short-running queries on slow cores. The high recall
achieved by DDS allows us to correctly predict the majority
of the long-running queries and execute them using fast cores
to reduce tail latency. Good precision is also important here:
although faster cores provide higher performance and com-
plete queries faster, they have lower energy efficiency, i.e.,
to complete the same amount of work, they consume more
energy than using slower and energy-efficient cores [24]. The
good precision of DDS allows us to execute most of the short-
running queries on slow cores to reduce energy consumption
and improve system throughput.
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Figure 9: 99.99th-percentile response time on the heteroge-
neous server.

We simulate a heterogeneous server composed of 3 fast
cores (i7 Sandy bridge cores) and 6 slow cores (AtomD
cores). We compare DDS with S in our evaluation using the
same workload as Section 5.1. Due to space limit, we only
summarize the key results. As shown in Figure 9, at mod-
erate to high load, comparing with S, DDS reduces 99.99th-
percentile latency of ISN from 200 ms to 120 ms. To meet
99.99th-percentile latency target of 120 ms, DDS supports
up to 800 QPS, while S only obtains 330 QPS. DDS more
than doubles the server throughput. In order words, to pro-
cess the same amount of query workloads, DDS saves more
than half of the servers.

6. RELATED WORK
Execution time prediction on search queries. Pre-

diction of search query performance can be categorized into
quality and execution time prediction. Examples of quality
prediction include the prediction of user satisfaction [17],
and clicks to mobile advertisements [22].

In contrast, this work focuses on predicting the execu-
tion time of web search queries. Moffat et al. [21] show
that the execution time of a query is related to the posting
list lengths of its constituent query terms. However, under
dynamic pruning strategies, only a limited portion of such
listing is scored [1]. Macdonald et al. [20] incorporate term-
level statistics to predict the effect of dynamic pruning. In
particular, various term-level statistics (static features) are
computed for each term offline. When a query arrives, the
term-level features are aggregated into query-level statistics,
which are used as inputs to a regression model. Meanwhile,
[16] proposes query features modelling the complexity from
query relaxation, rewriting and personalization, and identi-
fies an effective subset outperforming existing predictors in
terms of accuracy with lower memory footprint.

However, these predictors, relying solely on static features,
could not achieve our accuracy requirements. We thus pro-
pose the use of dynamic features and error prediction for ex-
ecution time prediction. We empirically show that this com-
bination greatly improves prediction accuracy over state-of-
the-art predictors that use only static features. Prediction
accuracy gains can be used to optimize search systems in
many ways: Macdonald et al. [20] uses the predicted execu-
tion time for query scheduling, [16] for parallelization, [28]
for query pruning, and [11] for reducing power consump-
tion. We use parallelization and scheduling on heteroge-
neous hardware as our scenarios for demonstration.

Search query parallelization. Parallelizing the pro-
cessing of search queries is proposed to reduce query execu-
tion time [27, 15]. However, the prior studies do not consider



the prediction of query execution time, thus they parallelize
all queries, which wastes resources. Recently, a prediction-
based parallelization scheme [16] predicts query execution
time to parallelize long-running queries. This work improves
over prior work by employing delayed, dynamic, and selec-
tive prediction. Frachtenberg [10] can be viewed as a sim-
plistic delayed and dynamic prediction using a single feature,
which is an estimation on the number of matched docu-
ments. This single feature without trained regression model
does not capture other important factors contributing to the
query execution time such as query complexity and pruning,
and it cannot accurately predict query execution time.

Scheduling on heterogeneous servers. Prior work
shows that a heterogeneous server is more suitable for ap-
plications consisting of tasks of diverse demands to improve
performance or save energy [13, 8, 19, 7, 25]. For exam-
ple, users run delay-sensitive tasks using fast cores, while
background services use slow cores [13]. Lakshminarayana
et al. schedule the thread in a parallel job with a larger re-
maining execution time on a fast core [19]. They predict the
remaining time of jobs at PARSEC benchmark [3] based on
dynamic profiling. Since these applications are not directly
related to search engines, the proposed features for predict-
ing job execution time are not appropriate for our purpose.
Our work exploits the diversity (short-running versus long-
running jobs) in the demand of search queries and shows
how to use the predicted execution time to improve search
engine performance using heterogeneous hardware.

7. CONCLUSIONS
This paper studies reducing the extreme tail latency

of web search server by predicting and accelerating long-
running queries. We first show that the predictor must offer
high recall and good precision as our prediction require-
ments. We propose a novel prediction framework, DDS,
combining delayed prediction, dynamic features and predic-
tion error estimation. In particular, DDS delays the pre-
diction until we collect dynamic signals, which are highly
effective on improving prediction accuracy. Moreover, DDS
estimates both latency and error to selectively accelerate
queries, achieving high recall target with good precision.
Our simulation results show that DDS effectively reduces
the tail latency and significantly improves server through-
put.
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