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ABSTRACT In this paper, we propose methods of sound classification us-
hing NMF. Our sound classification systems extract non-negative
is a holistic representation, was successfully applied to elucidateCOmPONent parts from spectro-temporal sounds, as featuress. Bas
early auditory processing and to the task of sound classification. InVectors computed by NMF are re-ordered and portion of them are

contrast, parts-based representation is an alternative way of underS€lected, depending on their discrimination capability. Sound fea-
standing object recognition in brain. In this paper we employ the tures are computed from these reduced vectors and are fed into hid-

non-negative matrix factorization (NMF) [1] which learns parts- den Markov model (HMM) classifier. In addition, we also present
based representation in the task of sound classification. Methods? Simple method of learning sound features which are robust to
of feature extraction from spectro-temporal sounds using the NMF 2dditive noise. We compare our methods with ICA-based method
in the absence or presence of noise, are explained. Experimentafnd confirm the validity and high performance of our methods.
results show that NMF-based features improve the performance of

sound classification over ICA-based features. 2. NON-NEGATIVE MATRIX FACTORIZATION

Sparse coding or independent component analysis (ICA) whic

1. INTRODUCTION Efficient information representation plays a critical role in under-
standing perception of sensory data as well as in pattern classifi-

Sound classification is an important problem in audio processing, cation. One way to elucidate an efficient coding strategy in early
which has many interesting applications. For example, speech/nonauditory processing is based on a linear generative model where
speech classification can be used to improve the performance ofhe structure of the signals coming from external world is mod-
automatic Speech recognition. C|assifying audio Signa|s into var- elled in terms of a linear superposition of basis functions. In other
jous types of sounds such as speech, music, and environmentavords, the linear generative model assumes that the observed data
sounds is useful in audio retrieval system. Most of audio classi- z+ € IR™ is generated by
fication systems use frequency-based features or spectrum-based
features. However direct spectrum-based features are not ade- T, = As; + €, 1)
guate in audio classification, because of its high dimensionality

mXn H H 3 m H
and significant variance for perceptually similar signals [2]. Re- whereA € R contains basis vectorg € IR™ inits columns,

o . e . .
cently Casey proposed an ICA-based sound recognition system®* € IR” is latent vgrlat?le, and; € R™ is noise vector which
which was adopted in MPEG-7 [2, 3]. represents uncertainty in the data model. Various methods for

! learning the linear generative model, include factor analysis, prin-
cipal component analysis (PCA), sparse coding, and ICA. In gen-
eral, these methods leads to holistic representation.

On the other hand, there is some evidence for parts-based rep-
resentation in the brain, and certain computational theories of ob-
ject recognition rely on such representations. One way to find
parts-based representation using the linear generative model (1)
usefulness of which was demonstrated in early visual processing'S to qonstraln both basis vec_:tors and_ Iat_ent varlable_s to be non-

negative so that non-subtractive combinations of basis vectors are

[9] and in early auditory systems [10, 11]. Although ICA learns d del the ob 4d Th - i f
higher-order statistical structure of natural sounds (which leads to USed to model the observed data. The non-negative matrix factor-

localized and oriented receptive field characteristics), it is a holistic [zation (NM_F) [_1] IS a subsp_age method_ which finds a linear data

representation because basis vectors are allowed to be combineffPresentation in non-negativity constr aint.

with either positive or negative coefficients. Sup_pose thalV observed data pplnts{xt}, t=1,...,N
Parts-based representation is an alternative way of understand@'® available. Denote the data matrix By = [z - @y]. The

ing the perception in the brain and certain computational theoriesl"’m_ant varlable matri¥s'is also d_efln_ed ina S|mllar manner. Under

rely on such representations. For example, Briederman claimedP©iSson noise model, the log-likelihood is given by

that any object can be described as a configuration of perceptual "

alphabet which is referred to ns (geometric ions) [12]. An

infuitive idea of learning parts-%z(;ed(?epresentation)is[to]force lin- L= Z Z {Xitlog (A5),, — (AS),.} . @

ear combinations of basis vectors to be non-subtractive. The NMF

[13] is a simple multiplicative updating algorithm for learning parts- A local maximum of (2) is found by the following multiplicative

based representation of sensory data. updating rule (see [13]) for details):

ICA is a statistical method which aims at decomposing multi-
variate data into a linear combination of non-orthogonal basis vec-
tors with coefficients being statistical independent [4, 5]. ICA was
successfully applied to elucidate early auditory processing in the
viewpoint of efficient encoding [6, 7] and was shown to well-match
sparse auditory receptive fields [8]. ICA is a way of encoding sen-
sory information efficiently and is a method of sparse coding, the
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The entries ofA and .S are all non-negative, and hence only
non-subtractive combinations are allowed. This is believed to be
compatible to the intuitive notion of combining parts fromawhole, _____
and is how NMF learns a parts—based representation [1]. Itis als¢
consistent with the physiological fact that the firing rate are non-= = —=
negative.
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3. FEATURE EXTRACTION BY NMF

Our methods of feature extraction from audio signals, consist of (b) ICA

three steps. First, we compute spectrograms and segment them

into a series of image patches through time to construct a data ma-

trix X which is factored into a product of basis matuk and Fig. 2. 10 basis images (out of 150) learned by NMF and ICA
the encoding matrid6 by NMF. Next, a few number of basis vec-  from spectro-temporal sounds, are shown. Basis images learned by
tors are selected, depending their discrimination capability. Finally NMF show well-localized characteristics, compared to ICA basis
features are learned using these selected basis vectors. The overalhages_

schematic diagram is shown in Fig. 1.

” ' “ ' “ "l ' . |~I" 3.2. Basis Selection
: NMF is an unsupervised learning method so that basis images are

Speetragrai @ ﬁ S' learned regardless of class labels. However, class information is
available in a training phase, so it is desirable to take this infor-
. | Feature mation into account. Our basis selection scheme is based on the
| Extraction discrimination measure that is defined as
Segmentation ﬁ A' ‘
Mik — mjk|
J(k) = —_— 1<k<n, (5)
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wherem;;, anda;;, denotes the mean and variance:8f row vec-

tor of matrix S that corresponds to clags The discrimination
Fig. 1. Schematic diagram of our sound classification system. measure (5) is reminiscent of Fisher’s Linear Discriminant (FLD)
measure which favors more separated mean and smaller variance.
Fig. 3 shows that the discrimination measure of 150 basis vec-
tors, where x-axis denotes the number of basis vector and y-axis
denotes the magnitude of discrimination measure. By choosing an
Audio signals sampled in time domain are transformed into spec- appropriate threshold value, we select a few number of basis vec-
trograms which represent time-dependent spectral energiesrafsou tors which are expected to have better discrimination. The matrix
Spectrograms are segmented into a series of image patches througl’ consists of: < n basis vectors selected by their discrimination
time. Hence, instead of working with time-domain audio signals, measure.
we play with a set of image sequence which do not allow nega-
tive values. Each image patch is converted into a vector and the .
data matrixX collectsN vectors of dimensiom:. The NMF fac- 33. Learning Features
tors X € R™ " into a product of the basis matrig € R™*" NMF basis images show the auditory receptive field characteristics
and the encoding matri§ € IR™*". The number of encoding  which are localized in frequency domain as well as in time domain
variables (basis coefficients), is chosen to be smaller than the (see Fig. 2). Although the NMF employs a linear data model, the
dimension of observation data;. In other words, each image inference of the hidden variabke given a basis matrid and ob-
patch in spectrograms is modelled in terms of linear superposition served data, is a nonlinear process because of the non-negativity
of localized basis images with encoding variables representing theconstraint. Hence, inferring an optimal hidden variable, given both
contributions of associated basis images. Exemplary basis imagesA andx is not a trivial problem.
computed by NMF and ICA are shown in Fig. 2. NMF basis im- Here we investigate two different methods of inferring the
ages exhibit much more localized characteristics than ICA basisbest hidden variables (which will be auditory features), given that
images. Both NMF and ICA are inherently related to sparse cod- A’ € IR™** whose column vectors consist efoasis vectors se-
ing, however, parts-based representation by NMF leads to morelected using the discrimination measure (5) franbasis vectors
localized and sparse characteristics for non-negative data. computed by NMF.

3.1. NMF of Spectral Sounds
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Fig. 3. The discrimination measure for each basis vector is shown.

Method | We compute the encoding variable mat$% associ-
ated withA’ by iterating the updating rule (3) until conver-
gence withA’ being fixed as constant.

Method Il In Method I, only selected basis vectors were used to
infer the associated encoding variables through the rule (3).
In other wordsn — « basis vectors (computed by NMF) do
not make any contribution in inferring encoding variables.
In contrast, Method Il incorporate — « basis vectorsA”
into inferring the encoding variable matr®’. The basis
matrix A is decomposed ad = [A’, A”] Only A" is up-
dated whileA’ being fixed. Then partially updated matrix
A is used to infer a new encoding variable matsix Only
the portion ofS = [S'7S"T)T associated withd’, ', is
kept for classification. This process is summarized below:
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This procedure make featu noise robust, because it al-
lows another basis for noise or other signals and weijht

is not corresponded to that basis. Table. 1 shows the noise
robustness of this feature by the 3—classes test data whict
is included gaussian noise. In this table, classification per-
formance is compared to each other. we could see that the
Method-Il was more noise robust.

4. HMM CLASSIFIERS

Hidden Markov models consist of three components; an initial
state distributionr;, a state transition matrif’;; and the obser-
vation density functiorb; (o) for each state. Continuous HMMs
setb; (o) to a multivariate Gaussian distribution with meganand

Table 1. Comparison of classification performance: Noisy data
case

Class Method-I Method-II
correct| incorrect| correct| incorrect
Speech(Male) 30 0 30 0
Speech(Female) 13 17 25 5
Music 10 0 9 1
Total 53 17 64 6

covariance matrid ;, giving B; = {u;, K ;} for each state. So,
hidden Markov modej is denoted by\; = {T';, B;, 7, } [14].

For classification, a likelihood that measures the probability of
each model given the observed data and the most likely state se-
quencel = {iy,42,...,i7} are estimated given observed d&a
and model parameteps;. The HMM classifier choose the model
with the maximum likelihood score, among the N competing mod-
els.

N* Earg{lglngNP(OJMj)} (8)

5. EXPERIMENT

We used TIMIT database for speech, some commercial CDs for
music and downloaded sounds for musical instruments and envi-
ronment sounds. The duration of the sound sequence was between
5 and 15 seconds. The set of data was split into 40% training data
and 60% test data.

In this experiment, all sounds were resampled at 8KHz. Spec-
trograms of sounds were computed using STFT with Hamming
window of length 25 ms and overlapping of length 15 ms. Spec-
trograms were segmented through time using a window of length
100 ms shifted by 50 ms, in order to construct a data matrix. Using
NMF updating rules (3) and (4), we computed 150 basis vectors
(n = 150). These basis vectors were ordered, depending on its
discrimination measure (5). We set a threshold in such a way that
90% of them were kept, hence, 113 ordered basis vectors were se-
lected. We used these 113 basis vectors to infer encoding variables
(features) using Method 1.

Query Sound
|
Feature ML Model |
Extraction : Selection

Fig. 4. Sound Classification System

For the test of our system, we used 10-class audio data and



HMM classifier that had the 5-hidden states and trained a collec-of Science and Technology under Brain Science and Engineering
tion of 10 hidden Markov models using conventional maximum Research Program and by BK 21 in POSTECH.
likelihood estimation. To test the classifiers, the unseen data was

presented to each HMM and the model with the highest likelihood

was selected using (8) (see Fig. 4).

8. REFERENCES
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(see Method-II of Table. 1). For general sound classification ex-
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(2]

compared to ICA based method using same training and test data.
Table. 2 shows the comparison of two methods, NMF and [3]

ICA method. ICA based classification was introduced in [3]. In
our experiment, ICA based method was performed by conven-
tional HMM for comparison. Correct classification were counted

asHits, and incorrect classifications were countedvhssed. The

performance for each method was measured as the percentage of[4]
correct classifications for the entire 126 test data. The results show
that both method has good performance; however, the NMF based

method shows slightly better results than ICA based method. This
result shows that the non-negative constraint is efficient to extract

better feature of audio signals.

Table 2. Classification Results for NMF and ICA

Class NMF ICA
#Hit | #Miss | #Hit | #Miss

Speech(Male) 30 0 30 0
Speech(Female) 30 0 28 2
Music 9 1 9 1
DogBark 9 0 2 7
Cello 10 0 9 1
Flute 9 1 9 1
Violin 7 0 2 5
Footsteps 9 0 8 1
Applause 3 2 2 3
Trumpet 4 2 5 1
Totals 120 [ 6 104 | 22
Performance 95.24% 82.54%

6. CONCLUSION

We have presented methods of feature extraction from spectral
sounds, which are based on NMF. Compared to the ICA-based
method, basis vectors computed by NMF showed more localized [

(5]

(6]

(7]
(8]

9]

(10]

(11]

(12]

13]

characteristics, which are close to parts-based representation. Meth-

ods of inferring encoding variables (corresponding featurespngiv

basis vectors and data, were proposed. In addition to localized[14]
characteristics of NMF basis vectors, our proposed basis selection
scheme improved the classification performance. Using a conven-

tional HMM classifier, we confirmed that our proposed methods

outperformed the method based on ICA.
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