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ABSTRACT

Sparse coding or independent component analysis (ICA) which
is a holistic representation, was successfully applied to elucidate
early auditory processing and to the task of sound classification. In
contrast, parts-based representation is an alternative way of under-
standing object recognition in brain. In this paper we employ the
non-negative matrix factorization (NMF) [1] which learns parts-
based representation in the task of sound classification. Methods
of feature extraction from spectro-temporal sounds using the NMF
in the absence or presence of noise, are explained. Experimental
results show that NMF-based features improve the performance of
sound classification over ICA-based features.

1. INTRODUCTION

Sound classification is an important problem in audio processing,
which has many interesting applications. For example, speech/non-
speech classification can be used to improve the performance of
automatic speech recognition. Classifying audio signals into var-
ious types of sounds such as speech, music, and environmental
sounds is useful in audio retrieval system. Most of audio classi-
fication systems use frequency-based features or spectrum-based
features. However direct spectrum-based features are not ade-
quate in audio classification, because of its high dimensionality
and significant variance for perceptually similar signals [2]. Re-
cently Casey proposed an ICA-based sound recognition system
which was adopted in MPEG-7 [2, 3].

ICA is a statistical method which aims at decomposing multi-
variate data into a linear combination of non-orthogonal basis vec-
tors with coefficients being statistical independent [4, 5]. ICA was
successfully applied to elucidate early auditory processing in the
viewpoint of efficient encoding [6, 7] and was shown to well-match
sparse auditory receptive fields [8]. ICA is a way of encoding sen-
sory information efficiently and is a method of sparse coding, the
usefulness of which was demonstrated in early visual processing
[9] and in early auditory systems [10, 11]. Although ICA learns
higher-order statistical structure of natural sounds (which leads to
localized and oriented receptive field characteristics), it is a holistic
representation because basis vectors are allowed to be combined
with either positive or negative coefficients.

Parts-based representation is an alternative way of understand-
ing the perception in the brain and certain computational theories
rely on such representations. For example, Briederman claimed
that any object can be described as a configuration of perceptual
alphabet which is referred to asgeons (geometric ions) [12]. An
intuitive idea of learning parts-based representation is to force lin-
ear combinations of basis vectors to be non-subtractive. The NMF
[13] is a simple multiplicative updating algorithm for learning parts-
based representation of sensory data.

In this paper, we propose methods of sound classification us-
ing NMF. Our sound classification systems extract non-negative
component parts from spectro-temporal sounds, as features. Basis
vectors computed by NMF are re-ordered and portion of them are
selected, depending on their discrimination capability. Sound fea-
tures are computed from these reduced vectors and are fed into hid-
den Markov model (HMM) classifier. In addition, we also present
a simple method of learning sound features which are robust to
additive noise. We compare our methods with ICA-based method
and confirm the validity and high performance of our methods.

2. NON-NEGATIVE MATRIX FACTORIZATION

Efficient information representation plays a critical role in under-
standing perception of sensory data as well as in pattern classifi-
cation. One way to elucidate an efficient coding strategy in early
auditory processing is based on a linear generative model where
the structure of the signals coming from external world is mod-
elled in terms of a linear superposition of basis functions. In other
words, the linear generative model assumes that the observed data
xt ∈ IRm is generated by

xt = Ast + ǫt, (1)

whereA ∈ IRm×n contains basis vectorsai ∈ IRm in its columns,
st ∈ IRn is latent variable, andǫt ∈ IRm is noise vector which
represents uncertainty in the data model. Various methods for
learning the linear generative model, include factor analysis, prin-
cipal component analysis (PCA), sparse coding, and ICA. In gen-
eral, these methods leads to holistic representation.

On the other hand, there is some evidence for parts-based rep-
resentation in the brain, and certain computational theories of ob-
ject recognition rely on such representations. One way to find
parts-based representation using the linear generative model (1)
is to constrain both basis vectors and latent variables to be non-
negative so that non-subtractive combinations of basis vectors are
used to model the observed data. The non-negative matrix factor-
ization (NMF) [1] is a subspace method which finds a linear data
representation in non-negativity constraint.

Suppose thatN observed data points,{xt}, t = 1, . . . , N
are available. Denote the data matrix byX = [x1 · · ·xN ]. The
latent variable matrixS is also defined in a similar manner. Under
Poisson noise model, the log-likelihood is given by

L =

N
∑

t=1

m
∑

i=1

{

X it log (AS)
it
− (AS)

it

}

. (2)

A local maximum of (2) is found by the following multiplicative
updating rule (see [13]) for details):



Saµ ← Saµ

∑

i
AiaX iµ/(AS)iµ

∑

k
Aka

, (3)

Aia ← Aia

∑

µ
SaµX iµ/(AS)iµ

∑

υ
Saυ

. (4)

The entries ofA andS are all non-negative, and hence only
non-subtractive combinations are allowed. This is believed to be
compatible to the intuitive notion of combining parts from a whole,
and is how NMF learns a parts–based representation [1]. It is also
consistent with the physiological fact that the firing rate are non–
negative.

3. FEATURE EXTRACTION BY NMF

Our methods of feature extraction from audio signals, consist of
three steps. First, we compute spectrograms and segment them
into a series of image patches through time to construct a data ma-
trix X which is factored into a product of basis matrixA and
the encoding matrixS by NMF. Next, a few number of basis vec-
tors are selected, depending their discrimination capability. Finally
features are learned using these selected basis vectors. The overall
schematic diagram is shown in Fig. 1.

Fig. 1. Schematic diagram of our sound classification system.

3.1. NMF of Spectral Sounds

Audio signals sampled in time domain are transformed into spec-
trograms which represent time-dependent spectral energies of sounds.
Spectrograms are segmented into a series of image patches through
time. Hence, instead of working with time-domain audio signals,
we play with a set of image sequence which do not allow nega-
tive values. Each image patch is converted into a vector and the
data matrixX collectsN vectors of dimensionm. The NMF fac-
torsX ∈ IRm×N into a product of the basis matrixA ∈ IRm×n

and the encoding matrixS ∈ IRn×N . The number of encoding
variables (basis coefficients),n, is chosen to be smaller than the
dimension of observation data,m. In other words, each image
patch in spectrograms is modelled in terms of linear superposition
of localized basis images with encoding variables representing the
contributions of associated basis images. Exemplary basis images
computed by NMF and ICA are shown in Fig. 2. NMF basis im-
ages exhibit much more localized characteristics than ICA basis
images. Both NMF and ICA are inherently related to sparse cod-
ing, however, parts-based representation by NMF leads to more
localized and sparse characteristics for non-negative data.

(a) NMF

(b) ICA

Fig. 2. 10 basis images (out of 150) learned by NMF and ICA
from spectro-temporal sounds, are shown. Basis images learned by
NMF show well-localized characteristics, compared to ICA basis
images.

3.2. Basis Selection

NMF is an unsupervised learning method so that basis images are
learned regardless of class labels. However, class information is
available in a training phase, so it is desirable to take this infor-
mation into account. Our basis selection scheme is based on the
discrimination measure that is defined as

J(k) =
∑

i

∑

j

|mik −mjk|

σik + σjk

, 1 ≤ k ≤ n, (5)

wheremik andσik denotes the mean and variance ofkth row vec-
tor of matrix S that corresponds to classi. The discrimination
measure (5) is reminiscent of Fisher’s Linear Discriminant (FLD)
measure which favors more separated mean and smaller variance.
Fig. 3 shows that the discrimination measure of 150 basis vec-
tors, where x-axis denotes the number of basis vector and y-axis
denotes the magnitude of discrimination measure. By choosing an
appropriate threshold value, we select a few number of basis vec-
tors which are expected to have better discrimination. The matrix
A′ consists ofκ ≤ n basis vectors selected by their discrimination
measure.

3.3. Learning Features

NMF basis images show the auditory receptive field characteristics
which are localized in frequency domain as well as in time domain
(see Fig. 2). Although the NMF employs a linear data model, the
inference of the hidden variables, given a basis matrixA and ob-
served datax, is a nonlinear process because of the non-negativity
constraint. Hence, inferring an optimal hidden variable, given both
A andx is not a trivial problem.

Here we investigate two different methods of inferring the
best hidden variables (which will be auditory features), given that
A′ ∈ IRm×κ whose column vectors consist ofκ basis vectors se-
lected using the discrimination measure (5) fromn basis vectors
computed by NMF.
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Fig. 3. The discrimination measure for each basis vector is shown.

Method I We compute the encoding variable matrixS′ associ-
ated withA′ by iterating the updating rule (3) until conver-
gence withA′ being fixed as constant.

Method II In Method I, only selected basis vectors were used to
infer the associated encoding variables through the rule (3).
In other words,n−κ basis vectors (computed by NMF) do
not make any contribution in inferring encoding variables.
In contrast, Method II incorporaten− κ basis vectors,A′′

into inferring the encoding variable matrixS′. The basis
matrixA is decomposed asA = [A′ , A′′] Only A′′ is up-
dated whileA′ being fixed. Then partially updated matrix
A is used to infer a new encoding variable matrixS. Only
the portion ofS = [S′T S′′T ]T associated withA′, S′, is
kept for classification. This process is summarized below:

A
′′
ia ← A

′′
ia

∑

µ
SaµX iµ/(AnewS)iµ

∑

υ
Saυ

(6)

A
new = [A′ , A′′], A

′′ ∈ IRm×(n−κ)

Saµ ← Saµ

∑

i
Anew

ia X iµ/(AnewS)iµ
∑

k
Anew

ka

(7)

S
′ = [s′

1 , s′
2 , · · · , s′

N ] s
′ ∈ IRκ

This procedure make featureS′ noise robust, because it al-
lows another basis for noise or other signals and weightS′

is not corresponded to that basis. Table. 1 shows the noise
robustness of this feature by the 3–classes test data which
is included gaussian noise. In this table, classification per-
formance is compared to each other. we could see that the
Method-II was more noise robust.

4. HMM CLASSIFIERS

Hidden Markov models consist of three components; an initial
state distributionπi, a state transition matrixT ij and the obser-
vation density functionbj(o) for each state. Continuous HMMs
setbj(o) to a multivariate Gaussian distribution with meanµj and

Table 1. Comparison of classification performance: Noisy data
case

Class Method-I Method-II
correct incorrect correct incorrect

Speech(Male) 30 0 30 0
Speech(Female) 13 17 25 5
Music 10 0 9 1
Total 53 17 64 6

covariance matrixKj , givingBj = {µj , Kj} for each state. So,
hidden Markov modelj is denoted byλj = {T j , Bj , πj} [14].

For classification, a likelihood that measures the probability of
each model given the observed data and the most likely state se-
quenceI = {i1, i2, . . . , iT } are estimated given observed dataO

and model parametersλj . The HMM classifier choose the model
with the maximum likelihood score, among the N competing mod-
els.

N∗ ≡ arg{ max
1≤j≤N

P (O, I|λj)} (8)

5. EXPERIMENT

We used TIMIT database for speech, some commercial CDs for
music and downloaded sounds for musical instruments and envi-
ronment sounds. The duration of the sound sequence was between
5 and 15 seconds. The set of data was split into 40% training data
and 60% test data.

In this experiment, all sounds were resampled at 8KHz. Spec-
trograms of sounds were computed using STFT with Hamming
window of length 25 ms and overlapping of length 15 ms. Spec-
trograms were segmented through time using a window of length
100 ms shifted by 50 ms, in order to construct a data matrix. Using
NMF updating rules (3) and (4), we computed 150 basis vectors
(n = 150). These basis vectors were ordered, depending on its
discrimination measure (5). We set a threshold in such a way that
90% of them were kept, hence, 113 ordered basis vectors were se-
lected. We used these 113 basis vectors to infer encoding variables
(features) using Method II.

Fig. 4. Sound Classification System

For the test of our system, we used 10-class audio data and



HMM classifier that had the 5–hidden states and trained a collec-
tion of 10 hidden Markov models using conventional maximum
likelihood estimation. To test the classifiers, the unseen data was
presented to each HMM and the model with the highest likelihood
was selected using (8) (see Fig. 4).

We performed two kinds of experiment, which were speech/music
discrimination for noisy data and general sound classification ex-
periment. For speech/music discrimination experiment for noisy
data, HMM-classifier was trained by clean signal and performances
were tested by noisy signal which was added by 5 dB white noise
(see Method-II of Table. 1). For general sound classification ex-
periment, we didn’t consider the noise and the performance was
compared to ICA based method using same training and test data.

Table. 2 shows the comparison of two methods, NMF and
ICA method. ICA based classification was introduced in [3]. In
our experiment, ICA based method was performed by conven-
tional HMM for comparison. Correct classification were counted
asHits, and incorrect classifications were counted asMissed. The
performance for each method was measured as the percentage of
correct classifications for the entire 126 test data. The results show
that both method has good performance; however, the NMF based
method shows slightly better results than ICA based method. This
result shows that the non-negative constraint is efficient to extract
better feature of audio signals.

Table 2. Classification Results for NMF and ICA
Class NMF ICA

# Hit # Miss # Hit # Miss

Speech(Male) 30 0 30 0
Speech(Female) 30 0 28 2
Music 9 1 9 1
DogBark 9 0 2 7
Cello 10 0 9 1
Flute 9 1 9 1
Violin 7 0 2 5
Footsteps 9 0 8 1
Applause 3 2 2 3
Trumpet 4 2 5 1

Totals 120 6 104 22
Performance 95.24% 82.54%

6. CONCLUSION

We have presented methods of feature extraction from spectral
sounds, which are based on NMF. Compared to the ICA-based
method, basis vectors computed by NMF showed more localized
characteristics, which are close to parts-based representation. Meth-
ods of inferring encoding variables (corresponding features), given
basis vectors and data, were proposed. In addition to localized
characteristics of NMF basis vectors, our proposed basis selection
scheme improved the classification performance. Using a conven-
tional HMM classifier, we confirmed that our proposed methods
outperformed the method based on ICA.
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