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ABSTRACT

Electroencephalogram (EEG) pattern classification plays an im-
portant role in the domain of brain computer interface (BCI). Hid-
den Markov model (HMM) might be a useful tool in EEG pat-
tern classification since EEG data is a multivariate time series data
which contains noise and artifacts. In this paper we present meth-
ods for EEG pattern classification which jointly employ principal
component analysis (PCA) and HMM. Along this line, two meth-
ods are introduced: (1) PCA+HMM; (2) PCA+HMM+SVM. Use-
fulness of principal component features and our hybrid method is
confirmed through the classification of EEG that is recorded dur-
ing the imagination of a left or right hand movement.

1. INTRODUCTION

The automatic classification of EEG patterns plays an important
role in an EEG-based BCI system. It provides a new communica-
tion channel between human brain and computer. In general, EEG
data is very noisy and contains several types of artifacts. Moreover,
EEG data consists of mixtures of several brain sources (which are
invisible to us) and noisy sources, which makes the problem even
harder.

Several attempts have been made to build an EEG-based BCI
system. The system consists of two procedure: (1) feature ex-
traction; (2) classification. For feature extraction, adaptive autore-
gressive model (AAR), Hjorth parameters, power spectrum have
widely been used. As a classifier, linear discriminant analysis
(LDA), neural networks, and recently HMM were used [6].

In this paper, we consider principal component features which
capture the second-order statistical structure of the data. Although
PCA has been mainly used to analyze spatial data, however, in this
paper we show that PCA is also a useful tool for time series data.
Since PCA retains maximum variance, it is expected to provide
features that are robust to small noise.

Based on principal component features, we employ a HMM
classifier that is a popular tool for modelling time series data. A re-
cent work on a HMM-based BCI system can be found in [5] where
Hjorth parameters were used. In this paper we show that principal
component features improves the classification performance of a
HMM (PCA+HMM). In addition we also present a hybrid method
which combines HMM and support vector machine (SVM). These
two methods are described in Sec. 3 and their usefulness is con-
firmed by computer simulations.

2. BACKGROUND

2.1. PCA

PCA aims to find a linear orthogonal transformation v = Wu

(where u is the observation vector) such that the retained vari-
ance is maximized. Alternatively, PCA is viewed as a minimizer
of reconstruction error It turned out that these principles (variance
maximizer or reconstruction error minimizer) leads to a symmet-
ric eigenvalue problem. The row vectors of W correspond to the
normalized orthogonal eigenvectors of the data covariance matrix.

A simple approach to PCA is to use singular value decompo-
sition (SVD). Let us denote the data covariance matrix by Ru =
E{ uuT } where the superscript T denotes the transpose of vector
or matrix. Then the SVD of Ru has the form

Ru = UuDuU
T
u , (1)

where Uu is the eigenvector matrix and Du is the diagonal ma-
trix whose diagonal elements correspond to the eigenvalues of Ru.
Then the linear transformation W for PCA is given by

W = U
T
u . (2)

For dimensionality reduction, one can choose p dominant column
vectors in Uu which are the eigenvectors associated with the p

largest eigenvalues in order to construct a linear transform W .
Many different methods for PCA have been developed. See [1, 4]
for further details on PCA.

2.2. HMM

HMM is a widely-used probabilistic method which is useful in
modelling time series data. It has been extensively used in speech
recognition and computational biology. It is a simple dynamic
Bayesian network which can represent probability distributions
over sequences of observations.

Let us denote a sequence of observations {yt} and a sequence
of hidden states {st} where t = 1, . . . , T . A HMM assumes two
sets of conditional independence relations: (1) the observation yt

is independent of all other observations and states given st; (2)
the state st depends on only st−1, i.e., states satisfy the first-order
Markov property. It follows from these conditional independence
relation that the joint probability distribution of states and obser-
vations can be factorized as

P (s1, . . . , sT , y
1
, . . . , yT )

= P (s1)P (y
1
|s1)

T
∏

t=2

P (st|st−1)P (yt|st). (3)
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Figure 1: Schematic diagram for PCA-HMM1: Raw data is preprocessed in the stage of data segmentation to extract principal components
which are used to learn two HMMs, each of which corresponds to left hand or right hand movement; Final decision resorts to the likelihood
scores calculated by two HMMs.
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Figure 2: Schematic diagram for PCA-HMM2: Raw data is preprocessed in the stage of data segmentation to extract principal components;
Principal components extracted from each channel are used to learn two HMMs, thus, in total, four HMMs are trained; Likelihood scores
are fed into SVM to make a final decision.

A HMM assumes that hidden state variables are discrete-valued,
i.e., st ∈ {1, . . . , K}. The state vector st is a K-dimensional
vector with only one element being unity and the rest of elements
being zeros. In other words, which element of the state vector is
unity, depends on which state value is active. Then P (st|st−1)
can be represented by a K × K state transition matrix that is de-
noted by Φ. P (s1) is a K dimensional vector for initial state
probability that is denoted by π.

A HMM allows either discrete-valued observations (discrete
HMM) or real-valued observations (continuous HMM). In this pa-
per, we only consider a continuous HMM because EEG is real-
valued data. For real-valued observation vectors, P (yt|st) can be
modelled in many different forms such as a Gaussian, mixture of
Gaussians, or a neural network.

Learning HMM consists of two steps: (1) inference step where
the posterior distribution over hidden states is calculated; (2) learn-
ing step where parameters (such as initial state probability, state
transition probability, and emission probability) are identified. The
well-known forward-backward recursion allows us to infer the pos-
terior over hidden states efficiently. More details on HMM can be
found in [7, 2]

2.3. SVM

Support vector machine (SVM) has been widely used in pattern
recognition and regression due to its computational efficiency and
good generalization performance. It was originated from the idea
of the structural risk minimization that was developed by Vapnik
in 1970’s [9].

Suppose we have a set of training data {(x1, z1), . . . , (xN , zN )}.
The decision function f(x) has the form

f(x) = sgn

(

N
∑

i=1

ziαik(x, xi) + b

)

, (4)

where {αi} are embedding coefficients and k(x, xi) is kernel that
is represented by the dot product, i.e.,

k(x, xi) = 〈x, xi〉 , (5)

where < ·, · > denotes the dot product.
The optimal decision function is computed by the following

quadratic programming

maximize J =

N
∑

i=1

αi −
1

2

N
∑

i=1

N
∑

j=1

αiαjzizjk(xi, xj)(6)

subject to αi ≥ 0, i = 1, . . . , N, and
N
∑

i=1

αizi = 0.(7)

More details on SVM can be found in [8].

3. METHODS

We present two methods which jointly employ PCA and HMM for
EEG pattern classification. In our methods, we consider only C3

and C4 channels located in sensorimotor cortex because we focus



on binary classification of EEG patterns that are recorded during
the imagination of either a left or right hand movement.

Schematic diagrams for our methods which are named as PCA-
HMM1 and PCA-HMM2, are shown in Fig. 1 and Fig. 2, re-
spectively. Both methods employ data segmentation procedure
where time series data is decomposed into overlapping blocks in
order to extract principal components. In PCA-HMM1, principal
component features extracted separately from C3 and C4 chan-
nels are concatenated, then are fed into the corresponding HMM
(which models either left-movement or right-movement) for train-
ing. On the other hand, in PCA-HMM2, principal component fea-
tures from each channel are fed into two HMMs separately, which
results in four HMMs in total. The SVM is employed to make a
final decision from the likelihood scores computed by HMMs.

3.1. Feature Extraction: PCA
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Figure 3: Data segmentation: Time series data is converted into a
data matrix.

The time series data is decomposed into N overlapping blocks
to construct M × N data matrix (where M is the number of data
points in the data block, see Fig. 3) which is used to find a p by M

matrix W for PCA. In our case, we calculate 4 matrixes - W C3,L,
W C4,L, W C3,R and W C4,R (where subscripts C3 and C4 denote
channels, L and R correspond to the imagination of left-hand and
right-hand movement, respectively) in training phase. Then fea-
ture vector is computed by vn = Wun.

The small noise will mainly appear in minor component direc-
tions which correspond to minor eigenvalues. Useful information
is expected to lie in principal directions. Therefore we can ex-
pect PCA can reduce some noise effect as well as extracting useful
features from time series data. Exemplary basis functions learned
by PCA are shown in Fig. 4, which looks similar to wavelet basis
functions. A major difference between PCA and wavelet transform
is that the former learns basis functions from the ensemble of data,
whereas the latter uses basis functions that are fixed in advance.

3.2. Classification: HMM+SVM

The principal component feature vector from C3 channel for HMML

(L means ”left hand movement”) is given by

vC3,L = W C3,Lu, (8)

and vC4,L is also computed by vC4,L = W C4,Lu.
In the case of PCA-HMM1, the feature vector for HMML,

yL, consists of principal components which concatenate vC3,L

and vC4,L, i.e., yL =
[

vT
C3,L, vT

C4,L

]T
. The feature vector for

HMMR, yR, is constructed in the same manner. Both HMML

and HMMR are learned from a corresponding set of features
that are computed from EEG data which is recorded during the
imagination of either a left or right hand movement. Given a test
EEG data, we compute likelihood values, i.e., P (y|HMML) and
P (y|HMMR) and assign it to the class which gives bigger like-
lihood value.

In the case of PCA-HMM2, the principal component feature
vectors, vC3,L, vC3,R, vC4,L, vC4,R are used separately to train
the corresponding HMMs. For classification, given a test data y,
four different likelihood values are produced from HMMCi,L and
HMMCi,R (i = 3, 4). These likelihood values are fed into the
SVM to make a final decision. Although the PCA-HMM1 consid-
ers the interaction between channels, the dimension of its feature
vector is twice larger than PCA-HMM2, which cause more com-
plexity.

Figure 4: Basis functions calculated by PCA are shown. From left
to right and from top to bottom, basis functions are in order of the
size of corresponding eigenvalues.

4. RESULTS

Two bipolar EEG-channels were recorded over left and right sen-
sorimotor areas, close to electrode positions C3 and C4. The EEG
are sampled at 128 Hz and bandpass filtered between 0.5 and 30
Hz. The experimental trial is as follows. From 0 to 2 s, a fixation
cross was presented, followed by the cue at 2 s. At 3 s an arrow
was displayed at the center of the monitor for 1.25 s. Depending
on the direction of the arrow presented left or right the subject was
instructed to imagine a movement of either the left or the right
hand. And then, feedback session continues from 4.25 to 8.0 s.
One session constitutes 40 times repeating the course of the trial
(20-left and 20-right). The total session is 4, so the number of trial
is 160: 80-left and 80-right. We did not use feedback session. So
the data from 3 to 4.25 s are used [3]. The window size for each
data block is 0.5 s with overlapped portion being 87.5%, and the
dimension are reduced by half of window size.
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Figure 5: Classification performance with respect to the number of states: (a) PCA-HMM1; (b) PCA-HMM2.

HMM1 HMM2
PCA 75.70 78.15
Raw 60.63 64.38
Hjorth 56.88 66.50

Table 1: Performance comparison for PCA features, raw EEG
data, and Hjorth parameters.

Fig. 5 show the box plots of classification accuracy for PCA-
HMM1 and PCA-HMM2 when the number of states varies. The
median is shown as a line across the box and the lower quartile and
the upper quartile are also shown as lower and upper boundary of
box. The minimum and maximum points are shown as lines. The
performance of HMM did not vary much depending on the number
of hidden states. The performance comparison for three different
features (PCA, raw data, and Hjorth parameters) in PCA-HMM1
and PCA-HMM2 is summarized in Table 1. One can observe that
PCA features outperform other features. PCA-HMM2 gave slight
better performance compared to PCA-HMM1. The reason being
is that in PCA-HMM2, separate HMMs were trained by principal
component features that were separate channels.

In all cases, we didn’t use the feedback session, but used the
cue session between 3 and 4.25 s. In the case using Hjorth param-
eter, the results are worse than the result using raw data, because
it extracts wrong information when the EEG data are mixed with
some artifacts. Principal component features improved the perfor-
mance of HMM by almost 10% and speeded up the convergence
in the training of HMM. Hence PCA is a suitable feature extractor
for EEG signal.

5. CONCLUSION

In this paper we have presented two methods for EEG pattern clas-
sification which jointly employ PCA and HMM (with SVM for
PCA-HMM2). Experimental study showed that PCA was a good
feature extractor for time series data.

Currently we are investigating theoretically why PCA gives
better performance when it is combined with HMM for EEG pat-
tern classification. In addition, a new structure (PCA-HMM2)
showed slightly better performance compared to PCA-HMM1. The

reason being is that PCA is applied to each channel separately so
that separate HMMs model the data better.
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