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Abstract

In this paper we present a method of sound classifica-
tion which exploits a parts-based representation of spectro-
temporal sounds, employing the nonnegative matrix factor-
ization (NMF) [1]. We illustrate a new way of learning non-
negative features using a variant of NMF and show its use-
ful behavior in the task of general sound classification with
comparison to independent component analysis (ICA) which
produces holistic features.

1. Introduction

Sound classification is an important problem in audio pro-
cessing, which has many interesting applications. For exam-
ple, speech/non-speech classification can be used to improve
the performance of automatic speech recognizers. Classify-
ing audio signals into various types of sounds such as speech,
music, and environmental sounds, is useful in audio retrieval
systems. A major challenge of general sound classification
lies in selecting robust acoustic features and learning models
with these features in such a way that diverse sound types
are well classified. Most of audio classification systems use
frequency-based features or spectrum-based features. How-
ever direct spectrum-based features are not adequate in audio
classification, because of its high dimensionality and signifi-
cant variance for perceptually similar signals [2].

Recently Casey proposed an ICA-based sound recogni-
tion system which was adopted in MPEG-7 [2, 3]. ICA is
a statistical method which aims at decomposing multivari-
ate data into a linear combination of non-orthogonal basis
vectors with encoding variables being statistical independent.
ICA was successfully applied to elucidate early auditory pro-
cessing in the viewpoint of efficient encoding [4] and was
shown to well-match sparse auditory receptive fields [5]. Al-
though ICA learns higher-order statistical structure of natural
sounds (which leads to localized and oriented receptive field
characteristics), it is a holistic representation becausebasis
vectors are allowed to be combined with either positive or
negative coefficients. A parts-based representation is an al-
ternative way of understanding the perception in the brain
and certain computational theories rely on such representa-
tions. For example, Briederman claimed that any object can
be described as a configuration of perceptual alphabet which

is referred to asgeons (geometric ions) [6]. An intuitive idea
of learning parts-based representations is to force linearcom-
binations of basis vectors to be non-subtractive. The NMF
[7] is a simple multiplicative updating algorithm for learning
parts-based representations of sensory data.

In this paper we present a method of acoustic feature ex-
traction from spectro-temporal sounds, which incorporates
with a parts-based representation through the NMF. We first
apply the NMF to the spectrogram of sounds in order to ex-
tract nonnegative basis vectors and associated encoding vari-
ables. These basis vectors are re-ordered and portion of
them are selected, depending on their discrimination capa-
bility. Acoustic features are computed from these selected
nonnegative basis vectors, are fed into a hidden Markov
model (HMM) classifier. In addition, we also present a
method of inferring encoding variables, given basis vectors
learned by NMF. We compare our method with the ICA-
based method and confirm the validity and high performance
of our method.

2. Nonnegative Matrix Factorization

Suppose thatN observed data points,{xt ∈ R
m}, t =

1, . . . , N are available. Denote the data matrix byX =
[x1, · · · ,xN ]. Linear model-based methods (such as PCA,
ICA, and NMF) construct approximate factorization of the
form

X ≈ AS, (1)

where the columns ofAR
m×n are basis vectors and each

column ofSR
n×N is called encoding variable vector (or la-

tent variable vector).

Under the Poisson noise model, the log-likelihood is
given by

L =

N
∑

t=1

m
∑

i=1

{Xit log (AS)it − (AS)it} , (2)

where some irrelevant terms are left out. The NMF searches
a local maximum of (2) by a multiplicative updating algo-



rithm which has the form

Saµ ← Saµ

∑

i AiaXiµ/(AS)iµ
∑

k Aka

, (3)

Aia ← Aia

∑

µ SaµXiµ/(AS)iµ
∑

υ Saυ

. (4)

The entries ofA andS are all nonnegative, and hence
only non-subtractive combinations are allowed. This is be-
lieved to be compatible to the intuitive notion of combining
parts from a whole, and is how NMF learns a parts–based
representation [1]. It is also consistent with the physiologi-
cal fact that the firing rate are non–negative. Instead of the
maximum likelihood with the Poisson noise model, the I-
divergence or the least squares criterion can be used in NMF,
which leads to slightly different multiplicative updatingal-
gorithms [7].

3. Learning Features by NMF

Our methods of learning features from audio signals, consist
of three steps. First, spectrograms of sounds are computed
and are segmented into a series of image patches through
time. Each image patch is converted to a vector through
column-stacking, in order to construct a data matrixX. Then
the data matrix is factored into a product of a basis ma-
trix A and an encoding variable matrixS by NMF. Next,
a few number of basis vectors are selected, depending their
discrimination capability. Finally, features are learnedus-
ing these selected basis vectors by our proposed inference
scheme. The overall schematic diagram is shown in Fig. 1.

Figure 1: Schematic diagram of our sound classification sys-
tem. The basis matrixA and the encoding variable matrix
S are learned by NMF from the data matrixX which con-
sists of the spectrogram patches in its columns. According to
a discrimination measure, a few number of basis vectors are
selected to construct a reduced-rank matrixA

′. GivenX and
A

′, a reduced-rank variable matrixS′ (which corresponds to
acoustic features), is computed by our proposed inference
method. These features are fed into the HMM classifier.

3.1. Decomposing Spectro-Temporal Sounds by NMF

Audio signals sampled in the time domain, are transformed
into spectrograms which represent time-dependent spectral

energies of sounds. Spectrograms are segmented into a series
of image patches through time. Hence, instead of working
with time-domain audio signals, we play with a set of image
sequence which do not allow negative values. Each image
patch is converted into a vector by column-stacking, in or-
der to construct a data matrixX ∈ R

m×N which consists
of N column vectors of dimensionm wherem corresponds
the size of each image patch andN is the number of image
patches. We decompose the data matrixX into a product of
the basis matrixA ∈ R

m×n and the encoding variable matrix
S ∈ R

n×N , using the NMF algorithm described in (3) and
(4). The number of encoding variables (basis coefficients),
n, is chosen to be smaller than the dimension of observation
data,m. In other words, each image patch in spectrograms
is modelled in terms of linear superposition of localized ba-
sis images with encoding variables representing the contri-
butions of associated basis images. Exemplary basis images
computed by NMF and ICA are shown in Fig. 2. NMF ba-
sis images exhibit much more localized characteristics than
ICA basis images. Both NMF and ICA are inherently related
to sparse coding, however, a parts-based representation by
NMF leads to more localized and sparse characteristics for
nonnegative data.

(a) NMF (b) ICA

Figure 2: Exemplary basis images learned by (a) NMF and
(b) ICA from spectro-temporal sounds, are shown. Basis
images learned by NMF show well-localized characteristics,
compared to ICA basis images.

The basis matrixA and the encoding variable matrix
S can be viewed as hair cells’ receptive fields and vibra-
tions, respectively. The encoding variables represent thede-
gree of activation (responses) of hair cells, given a sound
in the ear. Hair cells at the thick end, or the base of the
cochlea are activated by high-frequency sounds and cells at
the opposite ends, or the apex of the cochlea are activated by
low-frequency sounds. These receptive fields have extensive
overlap. So natural sounds like music or speech are made up
of complex frequencies, thus, sounds activate a broad range
of hair cells [6]. Therefore, it is desirable to select a set of ap-
propriate bases (hair cells), for the sound classification task.

3.2. Basis Selection

NMF is an unsupervised learning method such that basis im-
ages are learned regardless of class labels. However, the class
information is available in a training phase, so it is desirable
to take this information into account. Our basis selection
scheme is based on the discrimination measure that is de-



fined by

J (k) =
∑

i

∑

j

|mik −mjk|

σik + σjk

, 1 ≤ k ≤ n, (5)

wheremik andσik represent the mean and variance of the
kth row vector of the matrixS, in regards to the classi. The
discrimination measure (5) is reminiscent of Fisher’s Lin-
ear Discriminant (FLD) measure which favors more sepa-
rated mean and smaller within-class variance. By choosing
an appropriate threshold value, we selectκ ≤ n basis vectors
which are expected to have better discrimination. A reduced-
rank basis matrixA′ ∈ R

m×κ is constructed by theκ basis
vectors selected through their discrimination measure.

3.3. Learning Features: Inference of Encoding Variables

The basis images computed by NMF from the spectrograms
of sounds, resemble the auditory receptive field characteris-
tics, since they are well localized in the frequency domain as
well as in the time domain (see Fig. 2). The basis selection
method described in Sec. 3.2, produces a reduced-rank ba-
sis matrixA

′. Leaning acoustic features, givenA′ andX,
becomes a problem of finding associated encoding variables
S

′. In PCA or ICA, encoding variables are easily computed

by a linear mapping, i.e.,S′ =
(

A
′T

A
′

)

−1

A
′T

X. In con-

trast, the inference of encoding variablesS
′ is a nonlinear

process in NMF, due to nonnegativity constraints, although
NMF is based on the linear data model. Therefore, it is not
a trivial problem to infer optimal hidden variables (encoding
variables), givenA′ andX. Here we present two methods of
inferring encoding variables (which correspond to sound fea-
tures), given thatA′ ∈ R

m×κ whose column vectors consist
of κ basis vectors selected using the discrimination measure
(5) from n basis vectors computed by NMF. Two methods
of inferring encoding variables are summarized below and a
comparison between these two methods are shown in Figs. 3
and 4.

Method-I This is a simple way of inferring encoding vari-
ables, using the plain NMF updating rules withA

′ be-
ing fixed. In order to infer the encoding variable matrix
S

′ associated withA′, S′ is updated until convergence
using the rule (3), withA′ being fixed.

Method-II In Method I, only selected basis vectors were
used to infer the associated encoding variables through
the rule (3). In other words,n− κ basis vectors (com-
puted by NMF) do not make any contribution in in-
ferring encoding variables. In contrast, Method II in-
corporaten − κ basis vectors,A′′ into inferring the
encoding variable matrixS′. The basis matrixA is
decomposed asA =

[

A
′, A

′′
]

whereA
′ ∈ R

m×κ

is the reduced-rank basis matrix (constructed from the
basis selection) andA′′ ∈ R

m×(n−κ) is a dummy ma-
trix that takes part in inferringS′. Only A

′′ is up-
dated whileA′ is fixed. Then partially updated matrix

A is used to infer a new encoding variable matrixS.
Once this inference is done, onlyS′ associated with
A

′ whereS = [S′T , S
′′T ]T , is kept as features for

classification. This inference process is summarized
below:

A = [A′, A
′′],

A
′′

ia ← A
′′

ia

∑

µ SaµXiµ/(AS)iµ
∑

υ Saυ

, (6)

Saµ ← Saµ

∑

i AiaXiµ/(AS)iµ
∑

k Aka

. (7)
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Figure 3: Distributions of averaged values of encoding vari-
ables associated with corresponding basis vectors in Method-
I. Distributions for male speech, female speech, and music,
are similar. For better discrimination, it is desirable forthese
distributions to be distinct.

4. Experiments

The sound data that we used in our classification experi-
ments, consist of speech (from TIMIT), music (from some
commercial CDs), musical instrument samples, and environ-
mental sounds. The duration of sound signals was between 5
and 15 seconds. All sound signals were resampled at 8 kHz.
The data was split into 40% for training sets and 60% for test
sets.

Spectrograms were computed using STFT with Ham-
ming window of length 25 ms and overlapping of length 15
ms. Spectrograms were segmented through time using a win-
dow of length 100 ms shifted by 50 ms, in order to construct
a data matrix. The NMF updating rules (3) and (4) were
applied to compute 150 basis vectors (n = 150). These ba-
sis vectors were ordered, depending on their discrimination
measure (5). For basis selection, we set up a threshold in
such a way that 90% of basis vectors were kept, which pro-
duced 113 ordered basis vectors. We used these 113 basis
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Figure 4: Distributions of averaged values of encoding vari-
ables associated with corresponding basis vectors in Method-
II. Compared to Method-I, Method-II exhibits better discrim-
ination for noisy data, since distributions show differentchar-
acteristics.

vectors to infer encoding variables (features) using Method-I
and Method-II.

We carried out a general sound classification experiment
with 10 classes of audio signals. HMMs [8] were trained by
a conventional maximum likelihood method and each HMM
has 5 hidden states. In this experiment, we did not consider
noisy data and compared our proposed method (Method-
II) with an ICA-based method. Correct classification was
counted byHits, and incorrect classification was counted by
Missed. The performance for each method was measured
as the percentage of correct classification for the entire 126
test data. Table 1 summarizes the comparison results of our
Method-II and the ICA-based method. Method-II outper-
forms the ICA-based method, which confirms the effective-
ness of our new inference method and parts-based represen-
tations over holistic representations.

5. Conclusion

We have presented a method of sound classification which
exploited parts-based representations of spectro-temporal
sounds. The method used NMF to find nonnegative ba-
sis vectors, portion of which were chosen according to our
discrimination measure. Given selected basis vectors, we
have introduced a new way of learning nonnegative features.
For classification, we have used a conventional HMM. Ex-
perimental results confirmed the high performance of our
method, compared to ICA which provided holistic represen-
tations.

Table 1: Classification Results for Method-II and ICA
Class Method-II ICA

# Hit # Miss # Hit # Miss

Speech (Male) 30 0 30 0
Speech (Female) 30 0 28 2
Music 9 1 9 1
DogBarks 9 0 2 7
Cello 10 0 9 1
Flute 9 1 9 1
Violin 7 0 2 5
Footsteps 9 0 8 1
Applause 3 2 2 3
Trumpet 4 2 5 1

Totals 120 6 104 22
Performance 95.24% 82.54%
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