
A Multiplicative Up-Propagation Algorithm

Jong-Hoon Ahn jonghun@postech.ac.kr

Department of Physics, POSTECH, Korea

Seungjin Choi seungjin@postech.ac.kr

Department of Computer Science, POSTECH, Korea

Jong-Hoon Oh jhoh@postech.ac.kr

Department of Physics, POSTECH, Korea

Abstract

We present a generalization of the nonneg-
ative matrix factorization (NMF), where a
multilayer generative network with nonneg-
ative weights is used to approximate the ob-
served nonnegative data. The multilayer
generative network with nonnegativity con-
straints, is learned by a multiplicative up-
propagation algorithm, where the weights in
each layer are updated in a multiplicative
fashion while the mismatch ratio is prop-
agated from the bottom to the top layer.
The monotonic convergence of the multi-
plicative up-propagation algorithm is shown.
In contrast to NMF, the multiplicative up-
propagation is an algorithm that can learn
hierarchical representations, where complex
higher-level representations are defined in
terms of less complex lower-level representa-
tions. The interesting behavior of our algo-
rithm is demonstrated with face image data.

1. Introduction

Nonnegative matrix factorization (NMF) which was
published in Nature a few years ago (Lee & Seung,
1999), drew extensive attraction in machine learning
and pattern recognition communities. It is one of the
efforts to realize a parts-based representation which is
a way of understanding the perception in the brain and
certain computational theories rely on such a represen-
tation. We also encounter into a variety of practical
applications where parts-based representations of non-

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

negative data are useful. These include face images for
computer vision (Li et al., 2001), medical image analy-
sis (Lee et al., 2001), spectrograms of sound data (Cho
et al., 2003), text data, and so on (Saul et al., 2003).

NMF is a simple linear coding algorithm for a single-
layer generative network with nonnegativity con-
straints. Although it is an efficient linear coding
method for nonnegative data, the linear single-layer
generative network leads to several limitations in a cer-
tain general problem such as:

• when it learns data which lie on or near a nonlin-
ear manifold;

• when it learns syntactic relationships of the given
data;

• when it learns hierarchically generated data.

NMF is obviously not suitable for such cases. For in-
stance, when NMF is applied to some sequences of
images which contain facial expressions, it does not
show a parts-based representation clearly. For images
of objects viewed from extremely different viewpoints,
it requires much more data and additional degree of
freedom. NMF assumes that the hidden variables are
nonnegative, but makes no further assumptions about
their statistical dependency. Accordingly, NMF can-
not learn anything about the syntactic relationships
between parts. For instance, given two basis vectors
of eyes and eyes+eyebrows computed by NMF, we can-
not know the similarity or dependency between them.
Let us consider a problem of finding a set of initial
basis vectors, given a set of hierarchically generated
data, which is described as follows: 1. Assume that
we have a set of p1 nonnegative unit vectors; 2. Try
to produce p2 composites by mixing and transforming
them; 3. Try to repeat the step 2 and produce another

pi+1 composites from the ith composites; 4. When we
see only the final composites, could we find the initial
p1 nonnegative vectors;

Any modifications of the NMF algorithm in a single-
layer network do not yield a solution to this prob-
lem. Therefore, we propose a generalization of NMF,
where we employ a multilayer generative network with
nonnegativity constraints, which still preserve a use-
ful property of NMF such as parts-based representa-
tions. A generalization of NMF with employing a mul-
tilayer generative network, is an nonlinear extension
since squashing functions should be incorporated with
the multilayer network.

A conventional multilayer perceptron (MLP) that be-
long to a recognition model, can be efficiently trained
by an error back-propagation algorithm. It was also
shown that the multilayer generative network could be
trained by an error up-propagation algorithm (Oh &
Seung, 1997). A main difference between these two
networks is that the former is a supervised network
and the latter is an unsupervised network, whereas
both of them are trained by gradient-based additive
algorithms. The multilayer network that we consider
in this paper, is a generative network with all of synap-
tic weights being nonnegative. Therefore, the error
up-propagation algorithm (Oh & Seung, 1997) cannot
be directly applied for learning our multilayer gener-
ative network. However, this suggests us to use an
idea of error up-propagation. Motivated from an idea
of multiplicative update used in NMF, we develop a
new learning algorithm, multiplicative up-propagation
for training the multilayer generative network with
nonnegativity constraints. In our multiplicative up-
propagation algorithm, synaptic weights for each layer
are trained in a multiplicative fashion (in order to pre-
serve nonnegativity constraints), while the mismatch
(or the error) ratio is propagated from the bottom to
the top layer.

Two exemplary NMF algorithms result from objective
functions based on I-divergence and squared error. We
show that NMF could be a general optimizing rule
for various objective functions. As in gradient descent
rules used in back-prop and up-prop algorithms for a
given error function, our proposed multiplicative algo-
rithm can also be used for general objective functions
with nonnegativity constraints.

The rest of this paper is organized as follows. Next
section briefly reviews the original up-propagation al-
gorithm (Oh & Seung, 1997) and NMF (Lee & Seung,
1999). In Sec. 3, we illustrate an detailed derivation of
the proposed multiplicative up-propagation algorithm.
Its monotonic convergence is also shown in Sec. 3.

Then the algorithm is applied to face image data and
its interesting behavior is shown in Sec. 4. Finally
conclusion is drawn in Sec. 5.

2. Previous Work

2.1. Up-propagation

The up-propagation is an algorithm for inverting and
learning a multi-layer generative model, which gener-
alizes PCA and its variants such as conic coding (Oh
& Seung, 1997). The generative model is a network of
L layers of neurons with input layer at bottom, as de-
picted in fig. 2. The matrices H

(l), l = 1, · · · , L, are
the activations of the layers. The pattern H

(0) is gen-
erated from the hidden variables H

(L) by a top-down
pass through the network,

H
(l−1) = g(W (l)

H
(l)), l = L, · · · , 1.

The nonlinear function g acts on matrices component
by component. The matrix W

(l) contains the synaptic
connections from the neurons in layer l to the neurons
in layer l − 1. A bias term B

(l) can be added to the
argument of g, but is omitted here.

Given a sensory input V , the top-down generative
model can be inverted by finding hidden variables
H

(L) that generate a pattern H
(0) matching V . If

some of the hidden variables represent the identity of
the pattern, the inversion operation is called recogni-
tion. Alternatively, the hidden variables may just be a
more compact representation of the pattern, in which
case the operation is called analysis or encoding. The
inversion is done iteratively, as described below.

In the following, the operator⊙ denotes the Hadamard
product (elementwise multiplication), that is, Z =
X⊙Y means zij = xijyij . The bottom-up pass starts
with the mismatch between the sensory data V and
the generated pattern H

(0),

∆(1) = g′(W (1)
H

(1))⊙ (V −H
(0)), (1)

which is propagated upwards by

∆(l+1) = g′(W (l+1)
H

(l+1))⊙ ((W (l))T ∆(l)). (2)

When the error signal reaches the top of the network,
it is used to update the hidden variables H

(L),

∆H
(L) = −η(W (L))T ∆(L). (3)

This update closes the negative feedback loop. Then
a new pattern H

(0) is generated by a top-down pass,
and the process starts over again.

This iterative inversion process performs gradient de-
scent on the cost function 1

2 ‖ V −H
(0) ‖2, subject

a

error recognition

b

generation error

(a) (b)

Figure 1. Bottom-up and top-down processing in neural
network: (a) back-prop network; (b) up-prop network

to the constraints. This can be proved using the chain
rule, as in the traditional derivation of the back-prop
algorithm. Another method of proof is to add the
equations as constraints, using Lagrange multipliers,

1

2
‖ V −H

(0) ‖2 +

L
∑

l=1

(∆(l−1))T (H(l−1)−g(W (l)
H

(l))).

(4)
This derivation has the advantage that the bottom-up
activations ∆(l) have an interpretation as Lagrange
multipliers.

Inverting the generative model by negative feedback
can be interpreted as a process of sequential hypoth-
esis testing. The top-down connections generate a
hypothesis about the sensory data. The bottom-up
connections propagate an error signal that is the dis-
agreement between the hypothesis and data. When
the error signal reaches the top, it is used to generate
a revised hypothesis, and the generate-test-revise cy-
cle starts all over again. Perception is the convergence
of this feedback loop to the hypothesis that is most
consistent with the data.

The synaptic weights W
(l) determine the types of

patterns that the network is able to generate. To
learn from examples, the weights are adjusted to im-
prove the network’s generation ability. A suitable
cost function for learning is the reconstruction error
1
2 ‖ V − H

(0) ‖2 averaged over an ensemble of ex-
amples. Online gradient descent with respect to the
synaptic weights is performed by a learning rule of the
form

∆W
(l) = η∆(l−1)(H(l))T . (5)

The same error signal ∆(l) that was used to invert the
generative model is also used to learn it.

2.2. Nonnegative Matrix Factorization

Let a set of data be given as an p×N matrix V , with
each column consisting of the p non-negative pixel val-
ues of an image. Denote a set of basis images as a p×q
matrix W . Each image can be approximated as a lin-

ear combination of the basis images using coefficients.

V ≈WH (6)

where H ∈ R
q×N is the matrix which contains the

coefficients.

PCA requires that the columns of W be orthonor-
mal and the rows of H be mutually orthogonal. It
imposes no other constraints than the orthogonality
and hence allows the entries of W and H to be of
arbitrary sign. Many basis images, for instance eigen-
faces, lack intuitive meaning, and a linear combination
of the basis images generally involves complex can-
cellations between positive and negative values. The
NMF representations permit only nonnegative coeffi-
cients and thus non-subtractive combinations (Lee &
Seung, 1999; Lee & Seung, 2001).

On the other hand NMF imposes the non-negativity
constraints instead of the orthogonal basis and decor-
related hidden variables. The elements of W and H

are all non-negative, and hence only non-subtractive
combinations are allowed. This is believed to be com-
patible to the intuitive notion of combining parts to
form a whole, and is how NMF learns the parts-based
representation. It is also consistent with the physio-
logical facts that the firing rates are non-negative and
the signs of synapses do not change.

NMF uses the I-divergence of V from WH, defined
as

D(V ||WH)

=
∑

i,j

(

V ij log
V ij

(WH)ij
− V ij + (WH)ij

)

(7)

as the measure of fitness for factorizing V into WH.
The NMF factorization is defined as

min
W ,H

D(V ||WH), (8)

s.t W ,H ≥ 0.

D(V ||WH) reduces to Kullback-Leibler divergence
when

∑

i,j V ij =
∑

i,j(WH)ij = 1. The above op-
timization can be done by using multiplicative update
rules.

Haµ ← Haµ

∑

i W iaV iµ/(WH)iµ
∑

k W ka
,

W ia ← W ia

∑

µ HaµV iµ/(WH)iµ
∑

ν Haν
. (9)

The algorithm performs both learning and inference
simultaneously. That is, it learns a set of basis im-
ages and infers values for the hidden variables from

the visible variables. Although the generative model
is linear, the inference computation is nonlinear due to
the non-negativity constraints. The computation is a
type of generalized EM algorithm.

Although NMF is successful in learning facial parts
and semantic topics, this success does not imply that
the method can learn parts from any database, such
as images of objects viewed from extremely different
viewpoints, or highly articulated objects. Learning
parts for these complex cases is likely to require fully
hierarchical models with multiple levels of hidden vari-
ables, instead of the single level in NMF (Lee & Seung,
1999).

3. The Multiplicative Up-Propagation

Algorithm

There are a large number of neurons in inferior tempo-
ral cortex of monkeys which seem to encode an overall
shape of biologically important objects - not specific
features or parts. The finding agrees with hierarchical
theories of object perception. According to these theo-
ries, cells in the cortical areas code elementary features
such as line orientation and color. The outputs from
these cells are then combined by detectors sensitive
to higher-order features such as corners or intersec-
tions, an idea consistent with the findings of Hubel
and Wiesel. The process is continued as each succes-
sive stage codes more complex combinations. At the
top of the chain are IT neurons, selective for complex
shapes like hands or faces. A huge number of hierarchi-
cal models for object recognition have been proposed
over the years. Some of them were inspired by the de-
sire to build intelligent machines, others by the desire
to describe human recognition processes (Gazzaniga
et al., 2001).

In this paper, we will try to invert the hierarchical
recognition processes and view the visual perception
as a hypothesis testing process. Helmholtz, in his doc-
trine of unconscious inference, argued that perceptions
are formed by the interaction of bottom-up sensory
data with top-down expectations. According to one
interpretation of this doctrine, perception is a proce-
dure of sequential hypothesis testing. We propose a
new algorithm, called multiplicative up-propagation,
that realizes this interpretation in layered networks.
It uses top-down connections to generate hypotheses,
and bottom-up connections to revise them.

How can we build such a hierarchical structure of spe-
cial neurons which are responsible only for local sen-
sory features by multi-layer generative model? We
have already known that NMF can give local features

PSfrag replaements
H(0)H(1)

H(L�1)H(L)

W (1)W
(l)W

(L)

Figure 2. Multilayer generative network model: V ≈

H
(0) = g

(

W
(1)

g

(

W
(2)

g

(

· · · g

(

W
(L)

H
(L)

))))

and

H
(l) = g(W (l+1)

H
(l+1)). Note that it will be fully con-

nected.

and sparse codes from a given non-negative data set. It
is just a single-layer generative network and gives local
features and sparse codes. Then what about multi-
layer network with nonnegative weights and hidden
variables? It is what we will introduce in this section.
The previous notations of W and H in a single-layer
network are changed into W

(1) and H
(1). We start

by assuming further factorizations:

H
(l)
aµ = g

(

(W (l+1)
H

(l+1))aµ

)

, (10)

where l = 0, 1, · · · , L − 1. The nonlinear function g,
which must output nonnegative values and increase
monotonically, is applied elementwise to the matrix.
Then we can construct a L-layer nonnegative networks
as shown in Fig. 2. It is basically a generative model
and constructs the nonnegative input data at its bot-
tom layer. Before we show how it finds a new repre-
sentation from the nonnegative data, we should think
of the algorithm which we can find the optimized val-
ues of weights and hidden variables with. In order to
extend NMF to multilayer case, let us introduce two
matrices R and N to the update rules of equation (9):

Haµ ← Haµ

∑

i W ia
V iµ

(WH)iµ
∑

k W ka

= Haµ

∑

i W iaRiµ
∑

k W kaNkµ

= Haµ
(W T

R)aµ

(W T
N)aµ

, (11)

Table 1. Cost functions and initializations of N
(l) and R

(l) : If we use other cost functions, the initializations should be
changed

F N
(1)

R
(1)

‖ V −H
(0) ‖R N

(1)
iµ = (H

(0)
iµ)R−1g′((W (1)

H
(1))iµ) R

(1)
iµ = (V

(0)
iµ)R−1g′((W (1)

H
(1))iµ)

∑

iµ V iµ log(H
(0)
iµ)−H

(0)
iµ N

(1)
iµ = g′((W (1)

H
(1))iµ) R

(1)
iµ = g′((W (1)

H
(1))iµ)V iµ/H

(0)
iµ

∑

iµ V iµ/H
(0)
iµ + log H

(0)
iµ N

(1)
iµ = g′((W (1)

H
(1))iµ)/H

(0)
iµ R

(1)
iµ = g′((W (1)

H
(1))iµ)V iµ/(H

(0)
iµ)2

and

W ia ← W ia

∑

µ
V iµ

(WH)iµ

Haµ
∑

ν Haν

= W ia

∑

µ RiµHaµ
∑

ν N iνHaν

= W ia
(RH

T)ia

(NH
T)ia

(12)

where R = R
(1) is a matrix of ratios of V to WH

and N = N
(1) is a matrix of normalizing factors with

all elements 1. If we put R = V and N = WH, the
above rules will be for least squared error under non-
negativity. In fact such formulations can be applied to
all cost functions F that are defined as follows:

Definition 1 F is a cost function that quantify the
quality of the approximation between V and H

(0) =
g(W (1)g(W (2) · · ·)), if the conditions

∂F

∂W
(l)

= (N (l) −R
(l))(H(l))T (13)

∂F

∂H
(L)

= (W (L))T (N (L) −R
(L))

are satisfied, where R
(l) and N

(l) should be nonnega-
tive matrices for arbitrary nonnegative matrices W

(l)

and H
(l).

If we obtain the matrix R
(l) and N

(l) at lth layer of the
networks, we can optimize the multi-layer networks by
using the similar update rules at all layers:

W
(l)
ia ←W

(l)
ia

(

R
(l)

H
(l)T

)

ia
(

N
(l)

H
(l)T

)

ia

η

(14)

and

H
(L)
aµ ←H

(L)
aµ

(

W
(L)T

R
(L)

)

aµ
(

W
(L)T

N
(L)

)

aµ

η

, (15)

where the learning rate 0 < η ≪ 1 should be con-
sidered in nonlinear multilayer networks. Fortunately,

the R
(l) and N

(l) matrices are calculated by the fol-
lowing up-propagation rules:

R
(l+1)
iµ =

(

W
(l)T

R
(l)

)

iµ
g′

(

W
(l)

H
(l)

)

iµ
,

N
(l+1)
iµ =

(

W
(l)T

N
(l)

)

iµ
g′

(

W
(l)

H
(l)

)

iµ
,(16)

where l = 1, 2, · · · , L− 1 and

R
(1)
iµ =

V iµ

(W (1)
H

(1))iµ

g′
(

(W (1)
H

(1))iµ

)

,

N
(1)
iµ = g′

(

(W (1)
H

(1))iµ

)

. (17)

Another form of initializations is given in Table 1.

Theorem 1 F is nonincreasing under the update rules
of Eqs. (14) and (15). The cost is invariant under

these updates if and only if W
(l) and H

(L) are at a
stationary point of the cost function.

To prove Theorem 1, we will make use of the auxiliary
function that was used in (Lee & Seung, 2001).

Definition 2 G(W (l),W
(l)
t) is an auxiliary function

for F(W (l)) if the conditions

G(W (l),W
(l)
t) ≥ F(W (l)), G(W

(l)
t ,W

(l)
t) = F(W

(l)
t)

are satisfied. t is a discrete time index.

The auxiliary function is a useful concept because of
the following lemma.

Lemma 1 If G is an auxiliary function, then F is non-
increasing under the update

W
(l)
t+1 = arg min

W (l)
G(W (l),W

(l)
t)

Proof: F(W
(l)
t+1) ≤ G(W

(l)
t+1,W

(l)
t) ≤

G(W
(l)
t ,W

(l)
t) = F(W

(l)
t). �

Lemma 2 If the derivatives of G(W (l),W
(l)
t) are

∂G(W (l),W
(l)
t)

∂(W (l))ia

=

(

W
(l)

)1/η

ia
(

W
(l)
t

)1/η

ia

(

N
(l)(H(l))T

)

ia
−

(

R
(l)(H(l))T

)

ia
,

there exists an auxiliary function G(W (l),W
(l)
t) for

F(W
(l)
t).

Proof: Let E be the difference of G from F, G − F.

Then the derivatives of E(W (l),W
(l)
t) are

∂E(W (l),W
(l)
t)

∂(W (l))ia

=

(

W
(l)

)1/η

ia
−

(

W
(l)
t

)1/η

ia
(

W
(l)
t

)1/η

ia

{N (l)(H(l))T }ia.

Since the derivatives are nonnegative for (W (l))ia ≥

(W
(l)
t)ia and negative for (W (l))ia < (W

(l)
t)ia, there

exists the auxiliary function E(W (l),W
(l)
t) ≥ 0 by

adding a constant so that E can be zero at W
(l) =

W
(l)
t . �

Proof of Theorem 1 By lemma 1, putting the deriva-
tives zero in lemma 2 results in the update rule:

(W
(l)
t+1)ia = (W

(l)
t)ia

{

R
(l)
t+1(H

(l))T
}η

ia
{

N
(l)
t+1(H

(l))T
}η

ia

≈ (W
(l)
t)ia

{

R
(l)
t (H(l))T

}η

ia
{

N
(l)
t (H(l))T

}η

ia

, (18)

from R
(l)
t+1 ≈ R

(l)
t and N

(l)
t+1 ≈ N

(l)
t . Eq. (15) can be

shown similarly.
On the other hand, we can derive the up-propagation
rules from the definition 1. By considering

∂F

∂(W (l)
H

(l))
= N

(l) −R
(l)

from the chain rule ∂F
∂W

(l) = ∂F
∂(W

(l)
H

(l)
)
(H(l))T and

the eqn. (13), we get

N
(l+1) −R

(l+1)

=
∂F

∂(W (l+1)
H

(l+1))

=
∂F

∂g(W (l+1)
H

(l+1))
⊙ g′(W (l+1)

H
(l+1))

=
∂F

∂H
(l)
⊙ g′(W (l+1)

H
(l+1))

=

[

(W (l))T ∂F

∂(W (l)
H

(l))

]

⊙ g′(W (l+1)
H

(l+1))

=
[

(W (l))T (N (l) −R
(l))

]

⊙ g′(W (l+1)
H

(l+1)),

where the 3rd and 5th equations are expanded by using
the chain rules.

Thus, N
(l+1) − R

(l+1) =
[

(W (l))T (N (l) −R
(l))

]

⊙

g′(W (l+1)
H

(l+1)) or equation (16) can be obtained.
�

The proposed algorithm is very similar with the error
up-propagation algorithm for multi-layer neural net-
work model. We can find the rule by which error
up-prop algorithm is modified into multiplicative up-
prop algorithm: Elementwise addition(or subtraction)
is changed into elementwise multiplication(or division)
and the multiplication of the learning rate η is mod-
ified into the power of η. Both of them also use the
same type of up-prop rules (2) and (16). But they
are also different in a couple of aspects. The error up-
propagation algorithm propagates only error, whereas
the proposed algorithm should separately propagate
both normalizing factors and ratios of inputs to recon-
structed values.

4. Experiments

We applied the three-layer network model to a set of
facial images and trained it by using the multiplica-
tive up-propagation rules. As with all gradient-based
algorithms, the multiplicative up-propagation rules are
susceptible to local optima. Crucial to the success of
our experiments is a pertinent network growing algo-
rithm.

4.1. Network Growing

We begin the training of the networks from a single-
layer networks. In the first stage, the given data ma-
trix V are factorized into g(W (1)

H
(1)). Then we add

one layer on that and train the second layer so that
the H

(1) can be factorized into g(W (2)
H

(2)). The
two-layer networks are then trained by using the mul-

(a) (b)

Figure 3. (a) original face images; (b) reconstructed face
images.

tiplicative up-prop rules for the input matrix V to
be approximated by the matrix H

(0). The process to
grow the networks from the two-layer to three-layer is
the same as the previous steps. However, the method
does not assure the globally optimal solution to us. It
only helps avoid some worst solutions. Also note that
applying NMF recursively to the hidden values H

(l)

is not the same as our multiplicative up-propagation
rules.

4.2. Hierarchical Feature Analysis

We obtain a hierarchical set of features of facial im-
ages through the three-layer generative networks. By
applying the model and learning algorithm to a set
of size-normalized and eye-centered 1608 facial images
with size 19 × 14 (see Fig. 3), we obtained the visu-
ally hierarchical features. The transformed weights of
the first layer represent the highly localized features
of Fig. 4c, whereas the features of Fig. 4a correspond
to the nodes of top layer. The features of Fig. 4b are
similar to those of NMF. The complex features in a
layer are defined by the less complex features in the
subordinate layers, which is the reason why we name
the application a ’hierarchical feature analysis’.

This property is specially helpful in the case that we
should find the hierarchical relations or dependencies
of the features. We’ve already made an application
to the case and obtained some successful results (Ahn
et al., 2004). We can develope the algorithm and per-
form the hierarchical clustering of a set of nonnegative
data by constraining the algorithm to a condition such
that the summation of column vectors is one.

4.3. Representational Learning in IT Cortex

We are already familiar with the fact that mammalian
visual system is hierarchically constructed, through

(a)

(b)

(c)

(d)

Figure 4. Three sets of facial features in a hierarchical rela-
tionship: (a) column vectors of g(W (1)

g(W (2)
g(W (3))));

(b) column vectors of g(W (1)
g(W (2))); (c) column vectors

of g(W (1)); (d) features obtained by NMF

(a)

(b) = ⊕ ⊕ ⊕ ⊕ ⊕ · · ·

(c) = + + + + + · · ·

(d) = + + + + + · · ·

Figure 5. Whole-based representation vs.
Parts-based representation: (a) original
face; (b) our method (nonlinear summation,
∑

k
g(W (1)

g(W (2)
g(W (3)

h
(3)
k

)))); (c) our method

(linear summation,
∑

k
g(W (1)

g(W (2)
g(W (3))))h

(3)
k

); (d)
NMF.

which it acquires the flexible and invariant recognition
ability. What we are interested in here is IT cortex,
and its representational learning. The areas receive
their inputs via a number of cortico-cortical stages
from the primary visual cortex, striate cortex, through
pre-striate visual areas. Neurons that are found in
certain area of IT cortex preferentially or selectively
to faces. When they were found in the pioneer days,
some researchers conceived that they could respond
to the whole face of a particular individual, that is
’Grandmother Cell’ hypothesis. But it resulted in a
few of problems such that generalization, noise robust-
ness and excess of number of neurons. Instead, ensem-
ble coding theory was popularized for representational
learning of IT cortex. So to speaking, when a face
is considered, a special set of parts is required from
a pool of various types of parts such that eyes, nose
and mouth. NMF showed a principle for the parts-
based representation and it was noticed. But what is
a role of the neurons that respond only to faces? Here
we argue that there could exist a whole-based repre-
sentation of faces in Fig. 5. We guess together that
representations of facial information would be different
according to the level in hierarchy, and the top layer of
IT cortex could use the whole-based representations.

5. Conclusion

We proposed a new algorithm, multiplicative up-
propagation, for training the multilayer generative net-
work model with the nonnegativity. It could be consid-
ered as a nonlinear and multilayer extension of NMF.
We applied the three-layer generative network model

to the eye-aligned facial images and showed details of
parts and composites in hierarchical relations. We ar-
gue that these results better explain the representa-
tional learning of IT cortex.

6. Acknowledgment

This work was supported by Korea Ministry of Science
and Technology under Brain Science and Engineering
Research Program, KOSEF 2000-2-20500-009-5, and
Brain Korea 21 in POSTECH.

References

Ahn, J. H., Kim, S., Oh, J. H., & Choi, S. (2004). Mul-
tiple nonnegative-matrix factorization of dynamic
PET images. Proc. Asian Conf. Computer Vision.

Cho, Y. C., Choi, S., & Bang, S. Y. (2003). Non-
negative component parts of sound for classification.
Proc. IEEE ISSPIT. Darmstadt, Germany.

Gazzaniga, M. S., Ivry, R. B., & Mangum, G. R.
(2001). Cognitive neuroscience: The biology of the
mind. New York: W. W. Norton & Company.

Lee, D. D., & Seung, H. S. (1999). Learning the parts
of objects by non-negative matrix factorization. Na-
ture, 401, 788–791.

Lee, D. D., & Seung, H. S. (2001). Algorithms for non-
negative matrix factorization. Advances in Neural
Information Processing Systems.

Lee, J. S., Lee, D. D., Choi, S., & Lee, D. S. (2001).
Application of non-negative matrix factorization to
dynamic positron emission tomography. Proc. ICA
(pp. 629–632). San Diego, California.

Li, S. Z., Hou, X. W., Zhang, H. J., & Cheng, Q. S.
(2001). Learning spatially localized parts-based rep-
resentation. Proc. IEEE Conf. Computer Vision and
Pattern Recognition (pp. 207–212). Kauai, Hawaii.

Oh, J. H., & Seung, H. S. (1997). Learning gen-
erative models with the up-propagation algorithm.
Advances in Neural Information Processing Systems
(pp. 605–611). MIT.

Saul, L. K., Sha, F., & Lee, D. D. (2003). Statisti-
cal signal processing with nonnegativity constraints.
Proc. EUROSPEECH (pp. 1001–1004). Geneva,
Switzerland.

