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Abstract— Stochastic neighbor embedding (SNE) is a prob- ding method [5]. In contrast to other nonlinear dimension-
abilistic method of embedding objects, described by high- ality reduction methods, SNE is a probabilistic approach
dimensional vectors or by pairwise dissimilarities, into a lower- that preserves thalistribution of neighbor identities. The

dimensional space in a way that neighbor identities are preserved - . . . -
[5]. Despite 0'? the usefulybehaviorgof SNE, it sufferspfrom its Probabilistic framework on dimensionality reduction make

slow convergence due to a gradient-based implementation. In this it €asy to embed without any constraints. We recognized
paper we present a fast SNE algorithm which is approximately that LLE and LLC required that the manifold of data points

4-6 times faster than the gradient-based SNE algorithm. Our are convex and Isomap and Laplacian eigenmap assume that
fast SNE algorithm, namedTR-SNE employs a trust-region (TR) {ha manifold of data points is compact and dense. In SNE,

method which finds a direction and a step size in an efficient o . . .
and reliable manner with the help of a quadratic model of the the densities under a Gaussian, placed on each object in

objective function. We confirm the high performance and the fas  the high-dimensional space, are used to define a probability
convergence of our our TR-SNR through numerical experiments. distribution over all the potential neighbors of the object

The SNE searches for a set of lower-dimensional images of
the objects such that probability distributions over pttn
neighbors of these images, match as well as possible, the
Dimensionality reduction is a fundamental problem in ariginal distributions over the neighbors of objects. Itswa
variety of areas such as machine learning, pattern re¢ognit formulated as a minimization of a sum of Kullback-Leibler
exploratory data analysis, data visualization, and so @m- Vdivergences and was implemented using a gradient descent
ious methods of dimensionality reduction have been studietethod. A major obstacle in the the original SNE algorithm
so far. Among them, the most representative method might [ for practical applications, is its slow convergencesuléing
principle component analysis (PCA), the goal of which is tbrom the gradient descent implementation.
find a linear projection such that transformed variableaimet In this paper, we present a fast SNE algoritifiR-SNE,
the maximum variance. PCA is the simplest and the moshere we employ the trust-region method which finds a
powerful linear dimensionality reduction method, however direction and a step size in an efficient and reliable manner
is confined to be a linear mapping. Multidimensional scalingith the help of a quadratic model of the objective functiéh [
(MDS) [4] aims at searching for a lower-dimensional spac&he trust-region method defines a region around the current
usually Euclidean, in which points in the space represeit¢rate within which it trust the model to be an adequate
objects such that the distances between the points in He@resentation of the objective function, and then chobse t
space, match, as well as possible, the original dissirti#ari step to be the approximate minimizer of the model in this
between the objects described by high-dimensional vectarsst region. It is, in general, faster than the steepestedes
or by pairwise dissimilarities. In fact MDS attempts to findnethod and is free of a learning rate unlike the gradient-
a lower-dimensional embedding which preserve dissimildsased methods. Its convergence is between linear and digadra
ities, measured by Euclidean distance. Classical scabngrate and its stability is always guaranteed, in contrashéo t
closely related with PCA. Isomap [10] generalizes MDS biewton method. The TR-SNE algorithm inherits several usefu
taking geodesic distance instead of Euclidean distanae iqfroperties of trust-region methods, such as fast convesgen
account, so that objects in a curved manifold are embeddsed stability. The TR-SNE algorithm is approximately 4-6
into a lower-dimensional space with preserving neighbochotimes faster than the original gradient-based SNE algorith
relation. Other nonlinear dimensionality reduction melho Its useful behavior is confirmed through several numerical
include locally linear embedding (LLE) [7], [8], locallyriear experiments.
coordination (LLC) [9], charting a manifold [3], and Laplan
eigenmap [1], [2]. I[l. STOCHASTICNEIGHBOR EMBEDDING
Stochastic neighbor embedding (SNE) was recently pro-Denote byz, € RP an object described byA-dimensional
posed, which is as probabilistic lower-dimensional embedector. The vectorz € RPY is a long vector that is con-

I. INTRODUCTION



structed by stackindxi,...,xy} in a single column. The A. Trust-Region Methods

iinagedjc\)[f@ is denoted byy, € R? (d < D) and the vector  Tryst-region methods [6] define a region around the current
g € R™" is constructed in a similar manner. The original SNEerate within which they trust the model to be an adequate

algorithm [3] is described below. representation of the objective function, and then chobse t
Step INeighbors SelectionSelect neighbors by neigh- step to be the approximate minimizer of the model in thisttrus
borhoods ork nearest neighbors. region. In effect, they choose the direction and length ef th
Step 2Computing p;; and ¢;; Compute the probability, step simultaneously. If a step is not acceptable, they eethe

pij, thatz; would pick z; as its neighbor: size of the region and find a new minimizer. In general, the

o step direction changes whenever the size of the trust région

pii = exp (—d})) (1) altered.
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Step3 A Cost Function The aim of the embedding is to Fig. 1. An illustration of the trust-region method in determma direction

mat_Ch pij and Qij as well as possil_)Ie. Th_is i_S and a step size with the help of a quadratic model of the oljedtinction.
achieved by minimizing a cost function which is

a sum of Kullback-Leibler divergences betwegn Fig. 1 illustrates a trust-region approach for the minimiza
and ¢;; for each object. The cost function is givenion of an objective function7 in which the current point lies

®)

ij

by at one end of a curved valley while the minimizgr lies
B P at the other end. A quadratic model functien*), whose
J = Zzp” log Qi “) elliptical contours are shown as dashed lines, is based on
7 J -

function and derivative information aj(k) and possibly also
Step4 Embedding through Steepest DescenThe set of on information accumulated from previous iterations aegpst
images,y in the lower-dimensional space, are upA line search method based on this model searches along the
dated by a gradient-descent method which has tleep to the minimizer ofn(*), but this direction allows only a
form small reduction in7 even if an optimal step is taken. A trust-
L(k41) _ () (k) k) region method, on the other hand, steps to the minimizer of
Y =Y U A (3) 1% within the dotted circle, which yields a more significant
wheren®) is a learning rate and the gradiewit7 is reduction in7 and a better step. o _
given by 1) Outline of the Algorithm: The stepp is obtained by
solving the following subproblem:

T ™7 T
v — (5_7) ((”_J) C©  min m®E) =70+ [vT®)] 5+ -5 BYE (8)
oy, YN IBII<A® 2

oJ whereB¥) ¢ RN xdN js some symmetric matrix ant(*)
= 2 i — Y;)Pij — Qij t Pji — Q53 )- : : . y >
dy; zj: Wi ~¥;) Py — @5 pii ~ 030) 0 is the trust-region radius and
(7) J® = g@G"),
1. SNE THROUGH TRUST-REGION METHODS v ® 9T )
oy g=g*

Here we first briefly review trust-region methods and present
a fast SNE algorithm based on a trust-region method, which ©)
speeds up the convergence of the original SNE algorithmThe first issue to arise in defining a trust-region method
dramatically. is the strategy for choosing the trust-region radig”) at



each iteration. Our choice ak(*) is based on the agreement 2) Sability of the Algorithm: Trust-region methods guar-
between the model functiom*) and the objective function antee the global convergence, which is stated in the fotigwi
J at previous iterations. Given a stqjﬁ’”, this agreement theorem (See [6] for the proof)
measurep*) is defined as the ratio céctual reduction to Theorem 1: Suppose thafl B¥)|| < 3 for some constant
predicted reduction, i.e., B, that J is bounded below on the level s¢y|J7(y) <
J (y'9)}, and that all approximate solutions of Eq. (8) satisfy
o = JG") - 7@G™ + ™) (10) the inequalities

m) (0) — m®) ("))
) (0)—m® (k) ) || i ) IV
m\Y(0)—m > c||VC min | A ,
(0) (P") = al | ( H (k)H

Note that the predicted reductiomy*)(0) — m®*) (1‘)'(’“)>,

is always nonnegative since the stgd” is obtained by where0 < ¢; <1 and||ﬁ(’“)|| < ~yA®) for somey > 1.
minimizing the modelm(’“) over a region that includes the (a) If » = 0 in the trust-region algorithm and’ is
Steplzk)— 0. ;';?US if p*) is negative, the new objecuv?k)value continuously differentiable, then we have

j( +p ) is great(?r than the current valyg (y ) lim inf HVJ(MH _o.

so the step must be rejected. On the other hang( is k—oo0

close to 1, there is good agreement between the madel (b) Ifn=(0, i) in the trust-region algorithm and is
and the function7 over this step, so it is safe to expand the Liptchitz continuously differentiable, then we have
trust region for the next iteration. [§*) is positive but not . *

close to 1, we do not alter the trust region, but if it is close khjgo VI =0.

to zero or negative, we shrink the trust region. B. TR-SNE

Trust-Region Algorithm 1()1 ,IAlaorithm Outlin_iBTth trus.t-rggion mslthod require a
o - ~ model Hessian matrixB. Since it is possible to compute
GivenA >0, Ag € (0,4) , andn € [0, 3); the exact Hessiaiv27(¢) in SNE, we replaceB in Eq.

for k=0,1,2,... (8) by V27(%). The Hessian matrixv27 () € RIN*IN
Obtain*) by (approximately) solving Eq. (8); is computed as
Update RTN: 2?27 927
OF _ 7YY, 7Y, 0Yy
Evaluatep'® in Eq. (10); V27 () = : : 7 (11)
it p) < 027 027
A+ i”ﬁ(k)” YNoy, T 0YNOYy
else whe;e
I . *TJ .
if p(k) > g ; and Hp(k) H A(k) 0.0 2(])]1 Qji + Dij — qij)dlag(yli, ce 7ydi>- (12)
AGHD) — min @A® | A) vy,

Note thatp;; is asymmetric, sdB is also asymmetric. There-

else ) fore we use a symmetric form defined @—TJFB instead of
AG+D = A B 2
if p*) > We use the Steihaug method which employs the conjugate-
g(kﬂ) — g(k) + ﬁ(k) gradient (CG) method with a Steihaug’s termination testn€o
else pared to the doglgg an(_j the subspace method where solving the
S(k+1) _ (k). linear system of involvingB or (B + o) (for somea € R)
Y =Y, is costly, the Steihaug method is a TR-Newton-CG wiign

end (for) is an exact Hessian of the objective function. The Steihaug
method has several attractive properties: (1) It requires n
Here A is an overall bound on the step lengths. There areatrix factorization, so we can exploit the sparse stractfr
three strategies for finding approximate solution of Eq. (8he Hessiav2.7 without worrying about fill-in during a direct
The first strategy is thelogleg method which is appropriate factorization; (2) When the Hessian matrix is positive dédini
when the model HessiaB*) is positive definite. The secondthe Newton-CG method approximates the pure Newton step
strategy is thewo-dimensional subspace minimization which more and more closely as the solutigp is approached, so
can be applied wheB™®) is indefinite. The third strategy rapid convergence is also possible. When Hessian matrixis no
is the Seighaug’'s approach which is the most appropriate positive definite, we can make it positive definite by adding
when B™®) is the exact Hessial2J (y*)) (TR Newton-CG \I; (3) The CG iteration -the most computationally intensive
method) and when this matrix is large and sparse. (See Clpatt of the algorithm- may be executed in parallel, since the
and 6 in [6] for further details) key operation is a matrix-vector product. In this paper we us




TR Newton-CG method implemented through fin@nunc in 2) Convergence Rate [ SNE vs. TR-SNE] : The convergence
Matlab Toolbox. The pseudo code of the TR-SNE algorithmate of the steepest descent method is linear, i.e., thetolge
is described below. value 7*) converge to a minimum at a linear rate. On the

TR-SNE Algorithm
Given N data pointdx,...,xy} € R?;
Initialize the lower-dimensional images
{y1,...,yn} € R? with random numbers;
Setk=0,e =107°,6 = 1077;
do
Computep;; andg;;;
Compute the cost functiofy by solving Eq. (4);
if J < e stop condition is satisfied,;
Find 3**Y by using TR Newton-CG V27 (5*))];

Updateg**? by usingUpdate-RTN in TR Algorithm;

Setk =k +1;
if [l -

end (do) until any stop conditions are satisfied

7™ | < 6, stop condition is satisfied;

TR Newton-CG [parameter B]
Modify B asBTTJFB
Givene > 0;
Setp? = 0,7 =v7© 4O = _p©;
if 2@ <e

retun p = p%;
for j=0,1,2,...

it [d9)]" BdY) <0

Find 7 such thatp = ) + 7d?)

minimizesm(p) in Eq. (8), satisfied|p|| = A;

return
Setali) — [r<j)]Tr<j>/[d<j>]TBd(j);
Setﬁ(jJrl) _ I—)*(j) + a(j)d(j);
it 597 = A
Find 7 > 0 such thatp = %) + 7d?)
satisfies||p|| = A;
return p;
Setrl+) = p() + o) BdW:
it G0 < e O
return p = pUtY;
Set B0+ = [p@]" pU+D) /[p@] " £ 0)
SetdVth) = pU+1) 4 gG+1 )
end (for)

’

other hand, the convergence rate of TR Newton-CG method
becomes closer and closer to the pure Newton step, i.e, the
function value7 %) converge to a minimum at a quadratic rate
in sufficiently local region by following theorem. Theregor
the TR-SNE algorithm based on the TR Newton-CG method
is much faster than the original SNE algorithm based on the
steepest descent method.

Theorem 2. Let J be twice Lipschitz continuously differ-
entiable. Suppose the sequer{@é’“)} converges to a poirj,
that satisfies the second-order sufficient conditions awadl th
for all k£ sufficiently large, the trust-region algorithm based
on Eq. (8) with B%) — v?y(g““)) choose step;fi(k) that
achieve at least the same reduction as the Cauchy point (that
is, m® (™) < m® ([]°)) and are asymptotically exact
whenever|| 5™V < LA®), that is ,

13 — BN = o(I[B™ 1)

Then the trust-region bound; becomes inactive for alk
sufficiently large.

IV. NUMERICAL EXPERIMENTAL RESULTS

We used USPS digit data and Frey face DB in the task of
nonlinear dimensionality reduction, in order to evaludie t
performance of the TR-SNE algorithm and to compare it to
the original SNE algorithm where the learning raté& in Eq.

(5) was fixed as 0.1.

A. Comparison of the convergence rate

The first experiment was carried out with USPS digit data.
In the experiment, we chose 1000 digits among the overall
set of data. To avoid very similar pairs like 3to 5 or 7 to 9,
two hundred samples from each five classes (0,1,2,3, and 4)
are randomly selected. The comparison of the run-time as the
number of neighbors grow, is summarized in Table I. Fig. 2
shows the plot of objective function values versus the numbe
of iterations when the size neighbdr,is 10. We can see the
convergence rate of TR-SNE is superior to the original SNE.
In the experiment, the TR-SNE achieved the convergence at
23 iterations, whereas it took 692 iterations for the omgjin
SNE to achieve the convergence. Fig. 3 illustrates the geera
of execution times as the number of neighbor increase. As the
result says, TR-SNE is about three to six times as fast as SNE.

TABLE |
COMPARISON OF THE EXECUTION TIME AS THE NUMBER OF NEIGHBORS
GROW.
k 10 30 50 100 200 300 500

SNE 1113 | 2086 | 3025 | 6087 | 12903 | 34140 | 53200
TR-SNE | 220 | 470 | 1051 | 1281 | 2219 | 6401 | 15955
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B. Data Visualization

As mentioned pervious section, SNE can be applied in DalIrZ\]

Visualization that is a reduction problem to visualize hig

dimensional data using only 2 or 3 dimensional data. Now, we

are focusing on the embedding results to preserve the fgen

of neighbors of the original data in as well as possible.
Fig. 4 indicates a result of embedding on USPS data usi

SNE and TR-SNE, respectively. From this result, we no

In addition, we attempt to embedding on FREY data which
has about 2000 face samples with a variety of pose and
expression. We chose randomly 530 images from whole data
as test images. In Fig. 5, we shows the result of TR-SNE on
FREY data that has been embedded 560 dimension into two
dimensional space. From the result, we can find a intrinsic
property of the data. For example, the same pose images are
locally nearby each other or similar expression images are
closely distributed. In this experiment, the convergerigeet
of TR-SNE is approximately 4.2 times as fast as SNE.

V. CONCLUSIONS

The original SNE algorithm based on the steepest descent
method suffered from its slow convergence. To cope with this
limitation, a simple idea was suggested in [5]. By adding a
jitter (noise) for each iteration, it could accelerate tloawer-
gence rate slightly. However, it is still at a linear convarge
rate.

Trust-region methods guarantee the globally linear and
locally quadratic convergence rate. We have presented a
fast SNE algorithm, TR-SNE, which employed a trust-region
method. We have confirmed the high performance and fast
convergence of our TR-SNE algorithm through several nu-
merical experiments.
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that both SNE and TR-SNE translate 256 dimensional space
into two dimensional space with most closely distribution.
Even though all embedded data points corresponding the
original data have different absolute-coordinator betwthese
methods, we can aware almost same distributed form to each
other. The only difference between SNE and TR-SNE is
nothing except the convergence rate.
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Fig. 5. The result of TR-SNE on face data

(@)
Fig. 4. The embedding of USPS data (0-4) in two dimensionalesp@j the gradient-based SNE [5]; (b) our TR-SNE.




