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Abstract— Stochastic neighbor embedding (SNE) is a prob-
abilistic method of embedding objects, described by high-
dimensional vectors or by pairwise dissimilarities, into a lower-
dimensional space in a way that neighbor identities are preserved
[5]. Despite of the useful behavior of SNE, it suffers from its
slow convergence due to a gradient-based implementation. In this
paper we present a fast SNE algorithm which is approximately
4-6 times faster than the gradient-based SNE algorithm. Our
fast SNE algorithm, namedTR-SNE employs a trust-region (TR)
method which finds a direction and a step size in an efficient
and reliable manner with the help of a quadratic model of the
objective function. We confirm the high performance and the fast
convergence of our our TR-SNR through numerical experiments.

I. I NTRODUCTION

Dimensionality reduction is a fundamental problem in a
variety of areas such as machine learning, pattern recognition,
exploratory data analysis, data visualization, and so on. Var-
ious methods of dimensionality reduction have been studied
so far. Among them, the most representative method might be
principle component analysis (PCA), the goal of which is to
find a linear projection such that transformed variables retain
the maximum variance. PCA is the simplest and the most
powerful linear dimensionality reduction method, however, it
is confined to be a linear mapping. Multidimensional scaling
(MDS) [4] aims at searching for a lower-dimensional space,
usually Euclidean, in which points in the space represent
objects such that the distances between the points in the
space, match, as well as possible, the original dissimilarities
between the objects described by high-dimensional vectors
or by pairwise dissimilarities. In fact MDS attempts to find
a lower-dimensional embedding which preserve dissimilar-
ities, measured by Euclidean distance. Classical scaling is
closely related with PCA. Isomap [10] generalizes MDS by
taking geodesic distance instead of Euclidean distance into
account, so that objects in a curved manifold are embedded
into a lower-dimensional space with preserving neighborhood
relation. Other nonlinear dimensionality reduction methods
include locally linear embedding (LLE) [7], [8], locally linear
coordination (LLC) [9], charting a manifold [3], and Laplacian
eigenmap [1], [2].

Stochastic neighbor embedding (SNE) was recently pro-
posed, which is as probabilistic lower-dimensional embed-

ding method [5]. In contrast to other nonlinear dimension-
ality reduction methods, SNE is a probabilistic approach
that preserves thedistribution of neighbor identities. The
probabilistic framework on dimensionality reduction makes
it easy to embed without any constraints. We recognized
that LLE and LLC required that the manifold of data points
are convex and Isomap and Laplacian eigenmap assume that
the manifold of data points is compact and dense. In SNE,
the densities under a Gaussian, placed on each object in
the high-dimensional space, are used to define a probability
distribution over all the potential neighbors of the object.
The SNE searches for a set of lower-dimensional images of
the objects such that probability distributions over potential
neighbors of these images, match as well as possible, the
original distributions over the neighbors of objects. It was
formulated as a minimization of a sum of Kullback-Leibler
divergences and was implemented using a gradient descent
method. A major obstacle in the the original SNE algorithm
[5] for practical applications, is its slow convergence, resulting
from the gradient descent implementation.

In this paper, we present a fast SNE algorithm,TR-SNE,
where we employ the trust-region method which finds a
direction and a step size in an efficient and reliable manner
with the help of a quadratic model of the objective function [6].
The trust-region method defines a region around the current
iterate within which it trust the model to be an adequate
representation of the objective function, and then choose the
step to be the approximate minimizer of the model in this
trust region. It is, in general, faster than the steepest descent
method and is free of a learning rate unlike the gradient-
based methods. Its convergence is between linear and quadratic
rate and its stability is always guaranteed, in contrast to the
Newton method. The TR-SNE algorithm inherits several useful
properties of trust-region methods, such as fast convergence
and stability. The TR-SNE algorithm is approximately 4-6
times faster than the original gradient-based SNE algorithm.
Its useful behavior is confirmed through several numerical
experiments.

II. STOCHASTIC NEIGHBOR EMBEDDING

Denote byxt ∈ R
D an object described by aD-dimensional

vector. The vector~x ∈ R
DN is a long vector that is con-



structed by stacking{x1, . . . ,xN} in a single column. The
image ofxt is denoted byyt ∈ R

d (d ≪ D) and the vector
~y ∈ R

dN is constructed in a similar manner. The original SNE
algorithm [5] is described below.

Step 1Neighbors SelectionSelect neighbors byǫ neigh-
borhoods ork nearest neighbors.

Step 2Computing pij and qij Compute the probability,
pij , that xi would pick xj as its neighbor:

pij =
exp

(

−d2
ij

)

∑

k 6=i exp (−d2
ik)

, (1)

where d2
ij are dissimilarities between two objects

xi and xj in the high-dimensional space andσi is
a Gaussian kernel width usually set by hand. The
dissimilarities are computed by the scaled Euclidean
distance

d2
ij =

‖xi − xj‖
2

2σ2
i

. (2)

In the lower-dimensional space, theinduced proba-
bility qij (with a fixed variance) that the imageyi

pick yj as its neighbor, is described by

qij =
exp

(

−‖yi − yj‖
2
)

∑

k 6=i exp (−‖yi − yk‖
2)

. (3)

Step3 A Cost Function The aim of the embedding is to
match pij and qij as well as possible. This is
achieved by minimizing a cost function which is
a sum of Kullback-Leibler divergences betweenpij

and qij for each object. The cost function is given
by

J =
∑

i

∑

j

pij log
pij

qij

. (4)

Step4 Embedding through Steepest DescentThe set of
images,~y in the lower-dimensional space, are up-
dated by a gradient-descent method which has the
form

~y(k+1) = ~y(k) − η(k)∇J (k), (5)

whereη(k) is a learning rate and the gradient∇J is
given by

∇J =

[

(

∂J

∂y1

)T

, . . . ,

(

∂J

∂yN

)T
]T

, (6)

∂J

∂yi

= 2
∑

j

(yi − yj)(pij − qij + pji − qji).

(7)

III. SNE THROUGH TRUST-REGION METHODS

Here we first briefly review trust-region methods and present
a fast SNE algorithm based on a trust-region method, which
speeds up the convergence of the original SNE algorithm
dramatically.

A. Trust-Region Methods

Trust-region methods [6] define a region around the current
iterate within which they trust the model to be an adequate
representation of the objective function, and then choose the
step to be the approximate minimizer of the model in this trust
region. In effect, they choose the direction and length of the
step simultaneously. If a step is not acceptable, they reduce the
size of the region and find a new minimizer. In general, the
step direction changes whenever the size of the trust regionis
altered.

Trust region step

Trust Region
Line search direction

Contours of

Contours of

~y(k)

~y∗

J

m(k)

Fig. 1. An illustration of the trust-region method in determining a direction
and a step size with the help of a quadratic model of the objective function.

Fig. 1 illustrates a trust-region approach for the minimiza-
tion of an objective functionJ in which the current point lies
at one end of a curved valley while the minimizer~y∗ lies
at the other end. A quadratic model functionm(k), whose
elliptical contours are shown as dashed lines, is based on
function and derivative information at~y(k) and possibly also
on information accumulated from previous iterations and steps.
A line search method based on this model searches along the
step to the minimizer ofm(k), but this direction allows only a
small reduction inJ even if an optimal step is taken. A trust-
region method, on the other hand, steps to the minimizer of
m(k) within the dotted circle, which yields a more significant
reduction inJ and a better step.

1) Outline of the Algorithm: The step~p is obtained by
solving the following subproblem:

min
‖~p‖≤∆(k)

m(k)(~p) = J (k) +
[

∇J (k)
]T

~p +
1

2
~pT

B(k)~p, (8)

whereB(k) ∈ R
dN×dN is some symmetric matrix and∆(k) >

0 is the trust-region radius and

J (k) = J (~y(k)),

∇J (k) =
∂J

∂~y

∣

∣

∣

∣

~y=~y(k)
.

(9)

The first issue to arise in defining a trust-region method
is the strategy for choosing the trust-region radius∆(k) at



each iteration. Our choice of∆(k) is based on the agreement
between the model functionm(k) and the objective function
J at previous iterations. Given a step~p(k), this agreement
measureρ(k) is defined as the ratio ofactual reduction to
predicted reduction, i.e.,

ρk =
J (~y(k)) − J (~y(k) + ~p(k))

m(k)(0) − m(k)(~p(k))
. (10)

Note that the predicted reduction,m(k)(0) − m(k)
(

~p(k)
)

,

is always nonnegative since the step~p(k) is obtained by
minimizing the modelm(k) over a region that includes the
step~p = 0. Thus if ρ(k) is negative, the new objective value
J
(

~y(k) + ~p(k)
)

is greater than the current valueJ
(

~y(k)
)

,

so the step must be rejected. On the other hand, ifρ(k) is
close to 1, there is good agreement between the modelm(k)

and the functionJ over this step, so it is safe to expand the
trust region for the next iteration. Ifρ(k) is positive but not
close to 1, we do not alter the trust region, but if it is close
to zero or negative, we shrink the trust region.

Trust-Region Algorithm

Given ∆̄ > 0, ∆0 ∈ (0, ∆̄) , andη ∈ [0, 1
4 );

for k = 0, 1, 2, . . .

Obtain~p(k) by (approximately) solving Eq. (8);

Update RTN:

Evaluateρ(k) in Eq. (10);

if ρ(k) < 1
4

∆(k+1) = 1
4‖~p

(k)‖

else

if ρ(k) > 1
4 and‖~p(k)‖ = ∆(k)

∆(k+1) = min (2∆(k) , ∆̄)

else

∆(k+1) = ∆(k);

if ρ(k) > η

~y(k+1) = ~y(k) + ~p(k)

else

~y(k+1) = ~y(k);

end (for)

Here ∆̄ is an overall bound on the step lengths. There are
three strategies for finding approximate solution of Eq. (8).
The first strategy is thedogleg method which is appropriate
when the model HessianB(k) is positive definite. The second
strategy is thetwo-dimensional subspace minimization which
can be applied whenB(k) is indefinite. The third strategy
is the Steighaug’s approach which is the most appropriate
whenB(k) is the exact Hessian∇2J (y(k)) (TR Newton-CG
method) and when this matrix is large and sparse. (See Ch. 4
and 6 in [6] for further details)

2) Stability of the Algorithm: Trust-region methods guar-
antee the global convergence, which is stated in the following
theorem (See [6] for the proof).

Theorem 1: Suppose that‖B(k)‖ ≤ β for some constant
β, that J is bounded below on the level set{y|J (y) ≤
J
(

y(0)
)

}, and that all approximate solutions of Eq. (8) satisfy
the inequalities

m(k)(0)−m(k)(~p(k)) ≥ c1‖∇C(k)‖min

(

∆(k),
‖∇J (k)‖

‖∇B(k)‖

)

,

where0 < c1 ≤ 1 and‖~p(k)‖ ≤ γ∆(k) for someγ ≥ 1.
(a) If η = 0 in the trust-region algorithm andJ is

continuously differentiable, then we have

lim
k→∞

inf ‖∇J (k)‖ = 0.

(b) If η = (0, 1
4 ) in the trust-region algorithm andJ is

Liptchitz continuously differentiable, then we have

lim
k→∞

∇J (k) = 0.

B. TR-SNE

1) Algorithm Outline: The trust-region method require a
model Hessian matrixB. Since it is possible to compute
the exact Hessian∇2J (~y) in SNE, we replaceB in Eq.
(8) by ∇2J (~y). The Hessian matrix∇2J (~y) ∈ R

dN×dN

is computed as

∇2J (~y) =











∂2J
∂y1∂y1

· · · ∂2J
∂y1∂y

N

...
. . .

...
∂2J

∂y
N

∂y1
· · · ∂2J

∂y
N

∂y
N











, (11)

where

∂2J

∂yi∂yj

= −2(pji − qji + pij − qij)diag(y1i, . . . , ydi). (12)

Note thatpij is asymmetric, soB is also asymmetric. There-

fore we use a symmetric form defined byB
T

+B
2 instead of

B.
We use the Steihaug method which employs the conjugate-

gradient (CG) method with a Steihaug’s termination test. Com-
pared to the dogleg and the subspace method where solving the
linear system of involvingB or (B + αI) (for someα ∈ R)
is costly, the Steihaug method is a TR-Newton-CG whenB

is an exact Hessian of the objective function. The Steihaug
method has several attractive properties: (1) It requires no
matrix factorization, so we can exploit the sparse structure of
the Hessian∇2J without worrying about fill-in during a direct
factorization; (2) When the Hessian matrix is positive definite,
the Newton-CG method approximates the pure Newton step
more and more closely as the solution~y∗ is approached, so
rapid convergence is also possible. When Hessian matrix is not
positive definite, we can make it positive definite by adding
λI; (3) The CG iteration -the most computationally intensive
part of the algorithm- may be executed in parallel, since the
key operation is a matrix-vector product. In this paper we use



TR Newton-CG method implemented through thefminunc in
Matlab Toolbox. The pseudo code of the TR-SNE algorithm
is described below.

TR-SNE Algorithm

Given N data points{x1, . . . ,xN} ∈ R
D;

Initialize the lower-dimensional images

{y1, . . . ,yN} ∈ R
d with random numbers;

Setk = 0, ε = 10−5, δ = 10−5;

do

Computepij andqij ;

Compute the cost functionJ by solving Eq. (4);

if J < ε stop condition is satisfied;

Find ~p(k+1) by using TR Newton-CG [∇2J (~y(k))];

Update~y(k+1) by usingUpdate-RTN in TR Algorithm;

Setk = k + 1;

if ‖~y(k+1) − ~y(k)‖ < δ, stop condition is satisfied;

end (do) until any stop conditions are satisfied

TR Newton-CG [parameter B]

Modify B as BT
+B
2

Given ǫ > 0;

Set~p(0) = 0, r(0) = ∇J (0),d(0) = −r(0);

if ‖r(0)‖ < ǫ

return ~p = ~p(0);

for j = 0, 1, 2, . . .

if [d(j)]
T
Bd(j) ≤ 0

Find τ such that~p = ~p(j) + τd(j)

minimizesm(p) in Eq. (8), satisfies‖~p‖ = ∆;

return

Setα(j) = [r(j)]
T
r(j)/[d(j)]

T
Bd(j);

Set~p(j+1) = ~p(j) + α(j)d(j);

if ‖~p(j+1)‖ ≥ ∆

Find τ ≥ 0 such that~p = ~p(j) + τd(j)

satisfies‖~p‖ = ∆;

return ~p;

Setr(j+1) = r(j) + α(j)Bd(j);

if ‖r(j+1)‖ < ǫ‖r(0)‖

return ~p = ~p(j+1);

Setβ(j+1) = [r(j)]
T
r(j+1)/[r(j)]

T
r(j);

Setd(j+1) = r(j+1) + β(j+1)d
(j);

end (for)

2) Convergence Rate [SNE vs. TR-SNE ] : The convergence
rate of the steepest descent method is linear, i.e., the objective
value J (k) converge to a minimum at a linear rate. On the
other hand, the convergence rate of TR Newton-CG method
becomes closer and closer to the pure Newton step, i.e, the
function valueJ (k) converge to a minimum at a quadratic rate
in sufficiently local region by following theorem. Therefore
the TR-SNE algorithm based on the TR Newton-CG method
is much faster than the original SNE algorithm based on the
steepest descent method.

Theorem 2: Let J be twice Lipschitz continuously differ-
entiable. Suppose the sequence{~y(k)} converges to a point~y∗

that satisfies the second-order sufficient conditions and that
for all k sufficiently large, the trust-region algorithm based
on Eq. (8) withB(k) = ∇2J (~y(k)) choose steps~p(k) that
achieve at least the same reduction as the Cauchy point (that
is, m(k)(~p(k)) ≤ m(k)([~p(k)]c)) and are asymptotically exact
whenever‖[~p(k)]N‖ ≤ 1

2∆(k), that is ,

‖~p(k) − [~p(k)]N‖ = o(‖[~p(k)]N‖).

Then the trust-region bound∆k becomes inactive for allk
sufficiently large.

IV. N UMERICAL EXPERIMENTAL RESULTS

We used USPS digit data and Frey face DB in the task of
nonlinear dimensionality reduction, in order to evaluate the
performance of the TR-SNE algorithm and to compare it to
the original SNE algorithm where the learning rateη(k) in Eq.
(5) was fixed as 0.1.

A. Comparison of the convergence rate

The first experiment was carried out with USPS digit data.
In the experiment, we chose 1000 digits among the overall
set of data. To avoid very similar pairs like 3 to 5 or 7 to 9,
two hundred samples from each five classes (0,1,2,3, and 4)
are randomly selected. The comparison of the run-time as the
number of neighbors grow, is summarized in Table I. Fig. 2
shows the plot of objective function values versus the number
of iterations when the size neighbor,k is 10. We can see the
convergence rate of TR-SNE is superior to the original SNE.
In the experiment, the TR-SNE achieved the convergence at
23 iterations, whereas it took 692 iterations for the original
SNE to achieve the convergence. Fig. 3 illustrates the average
of execution times as the number of neighbor increase. As the
result says, TR-SNE is about three to six times as fast as SNE.

TABLE I

COMPARISON OF THE EXECUTION TIME AS THE NUMBER OF NEIGHBORS

GROW.

k 10 30 50 100 200 300 500

SNE 1113 2086 3025 6087 12903 34140 53200

TR-SNE 220 470 1051 1281 2219 6401 15955
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Fig. 2. The comparison of convergence speed in terms of the objective value
vs. the number of iterations.
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Fig. 3. The comparison of run-time as the number of neighbor grows.

B. Data Visualization

As mentioned pervious section, SNE can be applied in Data
Visualization that is a reduction problem to visualize high
dimensional data using only 2 or 3 dimensional data. Now, we
are focusing on the embedding results to preserve the identity
of neighbors of the original data in as well as possible.

Fig. 4 indicates a result of embedding on USPS data using
SNE and TR-SNE, respectively. From this result, we note
that both SNE and TR-SNE translate 256 dimensional space
into two dimensional space with most closely distribution.
Even though all embedded data points corresponding the
original data have different absolute-coordinator between those
methods, we can aware almost same distributed form to each
other. The only difference between SNE and TR-SNE is
nothing except the convergence rate.

In addition, we attempt to embedding on FREY data which
has about 2000 face samples with a variety of pose and
expression. We chose randomly 530 images from whole data
as test images. In Fig. 5, we shows the result of TR-SNE on
FREY data that has been embedded 560 dimension into two
dimensional space. From the result, we can find a intrinsic
property of the data. For example, the same pose images are
locally nearby each other or similar expression images are
closely distributed. In this experiment, the convergence time
of TR-SNE is approximately 4.2 times as fast as SNE.

V. CONCLUSIONS

The original SNE algorithm based on the steepest descent
method suffered from its slow convergence. To cope with this
limitation, a simple idea was suggested in [5]. By adding a
jitter (noise) for each iteration, it could accelerate the conver-
gence rate slightly. However, it is still at a linear convergence
rate.

Trust-region methods guarantee the globally linear and
locally quadratic convergence rate. We have presented a
fast SNE algorithm, TR-SNE, which employed a trust-region
method. We have confirmed the high performance and fast
convergence of our TR-SNE algorithm through several nu-
merical experiments.
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Fig. 4. The embedding of USPS data (0-4) in two dimensional space: (a) the gradient-based SNE [5]; (b) our TR-SNE.

Fig. 5. The result of TR-SNE on face data


