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Abstract— A trust-region method is a quite attractive opti-
mization technique, which finds a direction and a step size in an
efficient and reliable manner with the help of a quadratic model
of the objective function. It is, in general, faster than the steepest
descent method and is free of a pre-selected constant learning
rate. In addition to its convergence property (between linear
and quadratic convergence), its stability is always guaranteed, in
contrast to the Newton’s method. In this paper, we present an
efficient implementation of the maximum likelihood independent
component analysis (ICA) using the trust-region method, which
leads to trust-region-based ICA (TR-ICA) algorithms. The use-
ful behavior of our TR-ICA algorithms is confirmed through
numerical experimental results.

I. I NTRODUCTION

Independent component analysis (ICA) is a statistical
method that decomposes a multivariate data into a linear
sum of non-orthogonal basis vectors with basis coefficients
being statistically independent. A variety of approaches to
ICA have been developed. These include maximum likelihood
estimation, mutual information minimization, output entropy
maximization (infomax), and negentropy maximization (see
[5], [7] and references therein). All these approaches leadto an
identical objective function in ICA. A popular implementation
in these approaches, is gradient-descent learning (including
the natural gradient). Although gradient-based algorithms are
simple and guarantee the local stability, but they are relatively
slow and require a careful choice of a learning rate, which
are cumbersome in practical applications. In order to over-
come these drawbacks, Newton-type algorithms were recently
proposed [1], [12].

A trust-region method is a quite attractive optimization
technique, which finds a direction and a step size in an efficient
and reliable manner with the help of a quadratic model of the
objective function [10]. It defines a region around the current
iterate within which they trust the model to be an adequate
representation of the objective function, and then choose the
step to be the approximate minimizer of the model in this trust
region. In effect, they choose the direction and length of the
step simultaneously. If a step is not acceptable, they reduce the
size of the region and find a new minimizer. The step direction
changes whenever the size of the trust region is altered. It is, in
general, faster than the steepest descent method and is freeof
a constant learning rate unlike the conventional gradient-based
methods. Instead, the trust-region takes the place of learning
rate. Its convergence is between linear and quadratic rate and

its stability is always guaranteed, in contrast to the Newton’s
method.

In this paper, we present trust-region-based ICA (TR-ICA)
algorithms in the framework of maximum likelihood ICA so
that our algorithms carry the useful properties that trust-region
methods have. As practical implementation, we consider the
dogleg method, two-dimensional subspace method, and the
Steihaug method which are briefly reviewed in Sec. III.

II. I NDEPENDENTCOMPONENTANALYSIS

The simplest form of ICA considers the noise-free linear
generative model where the observation datax(t) ∈ R

n is
assumed to be generated by

x(t) = As(t), (1)

where A ∈ R
n×n containsn basis vectorsai ∈ R

n, i =
1, . . . , n in its columns ands(t) ∈ R

n is a latent variable
vector whose elementssi(t) are mutually independent.

In general, ICA can be illustrated by a probability density
matching problem [2], [4] which, in fact, turned out to be
equivalent to infomax, mutual information minimization, and
maximum likelihood estimation [3].

Let us denote the observed density and model density by
po(x) andp(x), respectively. The probability density matching
finds the parameters,A, which best match the observed density
po(x) and the model densityp(x). When the Kullback-Leibler
divergence is used as a distance measure, the probability
density matching is also referred to as the Kullback matching,
which leads to the risk that has the form

R = KL [po(x)||p(x)]

=

∫

po(x) log
po(x)

p(x)
dx. (2)

Note that the model densityp(x) satisfies the following
relation:

log p(x) = − log |det A|+

n
∑

i=1

log pi(si). (3)

Define W = A−1, then the estimates of latent variables are
y = Wx. With these definitions, the risk can be rewritten as

R = − log |det W | − E

{

n
∑

i=1

log pi(yi)

}

, (4)



whereE{·} denotes the statistical expectation operator. The
natural gradient ICA algorithm updatesW by

W (k+1) = W (k) + η
{

I − E
{

ϕ(y)yT
}}

W (k), (5)

whereη > 0 is the learning rate andϕ(y) is then-dimensional
element-wise function whoseith elementϕi(yi) is the negative
score function, i.e.,ϕi(yi) = −d log pi(yi)

dyi

.

III. T RUST-REGION METHODS

In this section, we briefly review a basic idea and practical
implementation of trust-region methods. Refer to [10] for
further details.

A. Basic Idea

Trust-region methods [10] define a region around the current
iterate within which they trust the model to be an adequate
representation of the objective function, and then choose the
step to be the approximate minimizer of the model in this trust
region. In effect, they choose the direction and length of the
step simultaneously. If a step is not acceptable, they reduce the
size of the region and find a new minimizer. In general, the
step direction changes whenever the size of the trust regionis
altered.
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Fig. 1. An illustration of the trust-region method in determining a direction
and a step size with the help of a quadratic model of the objective function.

Let us consider an objective functionf(w) : R
n2

→ R to
be minimized with respect to the parameterw ∈ R

n2

. Fig. 1
illustrates a trust-region approach for the minimization of an
objective functionf in which the current pointw(k) lies at one
end of a curved valley while the minimizerw∗ lies at the other
end. A quadratic model functionm(k) which has elliptical
contours, is based on function and derivative information at
w(k) and possibly also on information accumulated from
previous iterations and steps:

m(k)(p) = f (k) +
[

∇f (k)
]T

p +
1

2
pT B(k)p, (6)

where p ∈ R
n2

represents the step andB(k) ∈ R
n2×n2

is
some symmetric matrix and

f (k) = f(w(k)),

∇f (k) =
∂f

∂w

∣

∣

∣

∣

w=w(k)

.

(7)

A line search method based on this model searches along
the step to the minimizer of modelm(k), but this direction
allows only a small reduction inf even if an optimal step
is taken. A gradient direction does not use the information
of B(k), the rapid convergence can be expected only ifB(k)

plays a role in determining the direction of the step as well as
its length.

A trust-region method, on the other hand, steps to the
minimizer ofm(k) within the trust-region circle, which yields
a more significant reduction inf and a better step. The step
p is obtained by solving the following subproblem:

min
‖p‖≤△(k)

m(k)(p) = f (k) +
[

∇f (k)
]T

p +
1

2
pT B(k)p, (8)

where△(k) > 0 is the trust-region radius and‖ · ‖ is the
Euclidean norm. The solutionp(k)

∗ of Eq. (8) is the minimizer
of m(k) in the ball of radius△(k).

B. Algorithm

The first issue in defining a trust-region method is the
strategy for choosing the trust-region radius△(k) at each
iteration. Our choice of△(k) is based on the agreement
between the model functionm(k) and the objective function
f at previous iterations. Given a stepp(k), this agreement
measureρ(k) is defined as the ratio ofactual reduction to
predicted reduction, i.e.,

ρ(k) =
f
(

w(k)
)

− f
(

w(k) + p(k)
)

m(k)(0)−m(k)
(

p(k)
) . (9)

Note that the predicted reduction,m(k)(0)−m(k)
(

p(k)
)

, is
always nonnegative since the stepp(k) is obtained by mini-
mizing the modelm(k) over a region that includes the step
p = 0. Thus if ρ(k) is negative, the new objective value
f
(

w(k) + p(k)
)

is greater than the current valuef
(

w(k)
)

,
so the step must be rejected. On the other hand, ifρ(k) is
close to 1, there is good agreement between the modelm(k)

and the functionf over this step, so it is safe to expand the
trust region for the next iteration. Ifρ(k) is positive but not
close to 1, we do not alter the trust region, but if it is close
to zero or negative, we shrink the trust region.

In general, trust-region methods are faster than gradient
methods and guarantee the stability regardless of initial con-
ditions whereas Newton’s method does not. In a practical
consideration, a solution to Eq. (8) is very important and there
are some approximate solutions such as the dogleg method,
the two-dimensional subspace minimization, and the Steihaug
method. In this paper we use the dogleg method and the



subspace method which is implemented through thefminunc
function in Matlab Toolbox.

(Trust-Region Algorithm)

Given△ > 0, △(0) ∈ (0,△), andζ ∈ [0, 1
4 ):

for k = 0, 1, 2, . . .

Find p(k) which (approximately) solves Eq. (8);

Evaluateρ(k) from Eq. (9);

if ρ(k) < 1
4 , then△(k+1) = 1

4‖p
(k)‖

else, then

if ρ(k) > 3
4 and‖p(k)‖ = △(k), then

△(k+1) = min(2△(k),△)

else, then△(k+1) = △(k);

if ρ(k) > ζ, thenw(k+1) = w(k) + p(k)

else, thenw(k+1) = w(k)

end (for)

C. Dogleg, Subspace, and Steihaug

In Eq. (6), whenB is positive definite, the unconstrained
minimizer ofm is the full steppB = −B−1∇f . When this
point is feasible for Eq. (8), we havep(k)

∗ = pB for △ ≥
‖pB‖. When△ is tiny, the restriction‖p‖ ≤ △ ensures that
the quadratic term inm has little effect on the solution of
Eq. (8). The true solutionp is approximately the same as the
solution we would obtain by minimizing the linear function

f +∇fT p over ‖p‖ ≤ △, that is,p ≈ −△ ∇f
‖∇fT

‖
, when△

is small.

For intermediate values of△, the solutionp∗ typically
follows a curved trajectory like the one in Fig. 2. The dogleg
method finds an approximate solution by replacing the curved
trajectory forp∗ with a path consisting of two line segments.
The first line segment runs from the origin to the unconstrained
minimizer along the steepest descent direction defined by

pU = −
∇fT

∇f
∇fT B∇f

∇f , while the second line segment runs

from pU to pB (see Fig. 2).

The dogleg algorithm is an effective method whenB is
positive definite. IfB is not positive definite, its information
is discarded so that only steepest descent direction is exploited.
When B is positive definite and the full step is in the trust-
region, then thep becomes the full step. Otherwise the step
p is at the point of intersection of the dogleg path and the
trust-region boundary.

Compared to the dogleg method, the subspace method
widens the search forp to the entire two-dimensional sub-
space spanned bypB and pU , when B is positive definite.
For positive definiteB, the subspace method considers the
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Fig. 2. The optimal trajectory and the dogleg approximation.

following subproblem:

min
‖p‖≤△(k)

m(k)(p) = f (k) +
[

∇f (k)
]T

p +
1

2
pT B(k)p,

s.t. p ∈ span

[

∇f (k),
(

B(k)
)−1

∇f (k)

]

. (10)

When B contains negative eigenvalues, the two-dimensional
subspace in Eq. (10) is changed to

span

[

∇f (k),
(

B(k) + ξI
)−1

∇f (k)

]

, (11)

for some ξ ∈ (−λ1,−2λ1] where λ1 is the most negative
eigenvalue ofB(k).

The Steihaug method is based on the conjugate gradient
algorithm, an iterative algorithm for solving linear systems
with symmetric positive definite coefficient matrices. Hence
it is expected to converge to a solution faster, especially for
high-dimensional data.

D. Local Stability Analysis

Trust-region methods guarantee the local stability, whichis
stated in the following theorem (See [10] for the proof).

Theorem 1: Suppose that‖B(k)‖ ≤ β for some constant
β, that f is bounded below on the level set{w|f(w) ≤
f(w(0))}, and that all approximate solutions of Eq. (8) satisfy
the inequalities

m(k)(0)−m(k)
(

p(k)
)

≥ c1‖∇f (k)‖min



△(k),

∥

∥

∥
∇f (k)

∥

∥

∥

∥

∥

∥B
(k)
∥

∥

∥



 ,

where 0 < c1 ≤ 1 and ‖p(k)‖ ≤ γ△(k) for someγ ≥ 1.
If ζ ∈ (0, 1

4 ) in the trust-region algorithm andf is Lipschitz
continuously differentiable, then we have

lim
k→∞

∇f (k) = 0.

Remarks: The Cauchy pointp(k)
c is a point that minimizes

m(k) along the steepest descent direction. It can be shown that
the Cauchy pointp(k)

c satisfies above inequality withc1 =
1
2 . This implies that the dogleg, two-dimensional subspace
minimization and Steihaug method satisfy above inequality



with c1 = 1
2 , because they all produce approximate solutions

p(k) for which m(k)
(

p(k)
)

≤ m(k)
(

p
(k)
c

)

.

IV. TR-ICA

Popular ICA algorithms are based on the gradient or the
natural gradient method. Recently Newton or quasi-Newton
method were applied to ICA [1], [12]. Trust region methods
carry some useful properties such as super-linear convergence
(between linear and quadratic convergence), local stability, and
adjustable learning rate. To our best knowledge, trust-region
methods have never been employed in ICA, yet. In this section,
we develop TR-ICA algorithms using the dogleg method and
the subspace method.

In general, trust-region methods require the Hessian matrix
of the objective function and the evaluation of the objective
value at the current parameter estimate. To this end, we
consider the quasi maximum likelihood ICA [11] and describe
our TR-ICA algorithms for exemplary objective functions for
super- and sub-Gaussian sources so that the objective values
can be easily evaluated. This can be easily generalized to
any other objective functions in ICA. For the Hessian matrix
calculation, we use the result in [12].

The quasi maximum likelihood ICA leads to the following
empirical risk:

R = − log |det W | −
1

N

N
∑

t=1

n
∑

i=1

log pi(yi(t)). (12)

Trust-region methods update the size of the trust-region,
depending on the objective value evaluated at the current
estimate. Hence, we need to specify the probability density
functions pi(·). Here we consider two cases, each of which
corresponds to the super- and sub-Gaussian sources.

Let us denote the super- and sub-Gaussian density function
by p+

i and p−i , respectively. In the description of our algo-

rithms, the parameter vector isw ∈ R
n2

= vec
(

W T
)

where

vec(·) is the vec-function which stacks the columns of the
given matrix into one long vector.

We consider two exemplary score functions that were used
in ICA

d log p+
i (yi)

dyi

= − tanh(yi),

d log p−i (yi)

dyi

= −y3
i ,

which lead to the objective functions,f+(w) andf−(w), that

have the form

f+(w) = − log |W | −
1

N

N
∑

t=1

n
∑

i=1

log p+
i (yi(t))

= − log |W |+
1

αN

N
∑

t=1

n
∑

i=1

log cosh(αyi(t)),

f−(w) = − log |W | −
1

N

N
∑

t=1

n
∑

i=1

log p−i (yi(t))

= − log |W |+
1

βN

N
∑

t=1

n
∑

i=1

y4
i (t),

whereα, β are positive normalizing constants that are chosen
such thatp+

i andp−i are eligible density functions.

A. Gradient Descent Learning: Backtracking

In contrast to using a constant learning rate in the gradient
descent method, the backtracking method exploits the variable
step size, which is summarized below.

(Backtracking line search)

Chooseη(0), ρ, c ∈ (0, 1); setη ← η(0);
repeat

until f
(

w(k) + αp(k)
)

≤ f (k) + cη
[

∇f (k)
]T

p(k)

η ← ρη;
end (repeat)
Terminate withη(k) = η

In our numerical experiments, we usedη(0) = 1, ρ = 0.3,
c = 0.3.

B. Trust-Region Learning

We define then-dimensional element-wise functionψ(y) ∈
R

n by its ith element,ψi(yi) = − log pi(yi). We denote the
element-wise 1st-order derivative and 2nd-order derivative of
ψ by ψ′ and ψ′′, respectively. Then the objective function
(corresponding the risk in the quasi maximum likelihood ICA)
is written as

f(w) = − log |det W |+
1

N

N
∑

t=1

n
∑

i=1

ψi(yi(t)), (13)

where the statistical average is replaced by the time average
overN data points.

Regardless of super- or sub-Gaussian, the gradient and the
Hessian matrix of the objective function Eq. (13) are given by

∇f(w) = vec

(

−W−1 +
1

N

N
∑

t=1

x(t)(ψ′(y(t)))T

)

,(14)

∇2f(w) = H + D, (15)

whereD ∈ R
n2×n2

is a block-diagonal matrix which consists
of n blocks,Dl ∈ R

n×n, which have the form

Dl =
1

N

N
∑

t=1

ψ′′
l (yl(t))x(t)xT (t), (16)



andH ∈ R
n2×n2

consists ofn2 row vectors,~hm, that is given
by

~hm = [vec(aj~ai)]
T
, m = (i− 1)n+ j, (17)

for i = 1, . . . , n and j = 1, . . . , n. aj and~ai denote thejth
column vector and theith row vector ofA = W−1. More
detailed results can be found in [12].

The TR-ICA algorithm with the dogleg method is summa-
rized below. In the dogleg method, the symmetric matrixB(k)

in Eq. (6) is replaced by the Hessian matrix∇2f
(

w(k)
)

in
Eq. (15).

(Dogleg TR-ICA Algorithm)

Given△ > 0, △(0) ∈ (0,△), andζ ∈ [0, 1
4 ):

for k = 0, 1, 2, . . .

if ∇2f(w(k)) is positive definite, then
if ‖∇2f(w(k))−1∇f‖ ≤ △, then

p(k) = ∇2f(w(k))−1∇f

else, then
p(k) = intersec(Dogleg path, TR boundary)

else, then

p(k) = −
∇fT

∇f
∇fT B∇f

∇f

Evaluateρ(k) from Eq. (9);

if ρ(k) < 1
4 , then△(k+1) = 1

4‖p
(k)‖

else, then
if ρ(k) > 3

4 and‖p(k)‖ = △(k), then
△(k+1) = min(2△(k),△)

else, then△(k+1) = △(k);

if ρ(k) > ζ, thenw(k+1) = w(k) + p(k)

else, thenw(k+1) = w(k)

end (for)

C. Newton Method

The basic Newton stepp(k) is obtained by solving the
following symmetricn× n linear system

∇2f(w(k))p(k) = −∇f(w(k)). (18)

For local stability, the search directionp(k) is required to be a
descent direction, which is true if the Hessian∇2f(w(k)) is
positive definite. If the Hessian matrix is not positive definite,
or is close to being singular,p(k) may be an ascent direction
or may be excessively long.

In order to guarantee descent direction in the case of
nonconvex objective function, we use the modified Cholessky
factorization1 [6], which automatically finds a diagonal matrix
Γ such that the matrix∇2f(w(k))+Γ is positive definite. The
iteration rule is given by

w(k+1) = w(k) + αp(k), (19)

where the step sizeα is determined by the backtracking line
search.

1The matlab code of modified Cholessky factorization by Brian Borchers
is available at http://www.nmt.edu/ borchers/ldlt.html.

V. NUMERICAL EXPERIMENTS

We used 3 different data sets for our experiments. Data1
is a set of binary data which consists of mixtures of three
binary sources with 10000 data points for each source. Data2
consists of mixtures of two speeches and one music signal, all
of them were sampled at 8 kHz. Data3 is composed of DNA
microarray data with 95 dimension and 4027 genes [8], [9]
and we reduced 95 dimension to 15 dimension by PCA in our
experiments. For binary data and sound data, three mixture
signals were generated using the mixing matrixA given by

A =





−0.4667 2.0636 −0.5136

0.0680 2.3982 −0.1961

−2.5108 0.3002 0.2247



 , (20)

where the condition number ofA is 11.12 (well-conditioned
mixing).

In the gradient and the Newton method, the backtracking al-
gorithm was used to select the optimal learning rate. Therefore
the gradient (or the natural gradient) ICA algorithm achieves
the convergence faster than the case where the constant or
annealing learning rate was used.
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Fig. 3. Convergence comparison of several numerical optimization methods
in the quasi maximum likelihood ICA for a set of binary data.

Fig. 3 shows the convergence comparison of several nu-
merical optimization methods in ICA, which include: (1)
gradient; (2) natural gradient; (3) trust-region (fminunc); (4)
trust-region (dogleg); (5) Newton. As expected, the gradient
method required more iterations for convergence, comparedto
the trust-region or Newton method. In this case, the Newton
method required less number of iterations for convergence,
but ate up the almost same amount of CPU time as trust-
region methods, due to the high time complexity of the Newton
method.

In Fig. 3, one can observe that the objective value after
the first iteration, did not decrease in the TR-ICA algorithm.
The reason being is the trust-region method sometimes need
to control the size of the trust region without update. Once the
size of the trust region is determined, the trust-region method



showed rapid convergence, compared to the gradient-based
methods. The high CPU time in the gradient methods mainly
came from the part of finding the optimal learning rate using
the backtracking algorithm, in which at least several loops
were required to find out the step length and to evaluate the
objective value at each iteration.

For a set of microarray data (Data3), the convergence
comparison is shown in Fig. 4. The natural gradient method
achieved faster convergence than the gradient method in both
iteration numbers and CPU time. Nevertheless, the trust-region
method with the subspace method showed much faster conver-
gence than the natural gradient method in iteration numbers
as well as in CPU time. The dogleg method took less number
of iterations but ate up more CPU time, compared to the
gradient method. This resulted from that in the case of dogleg
method, if the Hessian is not positive definite, then it throws
the Hessian and uses gradient direction in trust region. The
subspace method, however, can use the non-positive definite
Hessian as stated in Sec. III.
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Fig. 4. Convergence comparison of several numerical optimization methods
in the quasi maximum likelihood ICA for a set of DNA microarray data.

In addition to the convergence comparison, we also carried
out the performance comparison in terms of the performance
index (PI) that is defined as

PI =
1

n(n− 1)

n
∑

i=1

∑n

j=1 |gij |

maxj |gij |
− 1, (21)

where gij is the (i, j)-element of the global system matrix
G = WA. This measure is always between 0 and 1 and
equal to zero if and only if there is a perfect match between
A−1 and W . Table. I summarizes the PI of the algorithms
that we tested. There was no difference in terms of PI for
several different optimization methods, which means, the final
performance after the convergence was achieved, were similar.

VI. CONCLUSIONS

We have presented TR-ICA algorithms which employed
the trust-region optimization scheme with the dogleg and the
subspace method. Trust-region methods find a direction and a

TABLE I

PERFORMANCEINDEX

Methods Binary Data Sound Signal

Gradient 2.120849e-003 6.173503e-003

Natural Grad. 2.119711e-003 7.293806e-003

TR fminunc 2.129067e-003 7.904882e-003

TR dogleg 2.120963e-003 7.906655e-003

Newton 2.120963e-003 7.906516e-003

step simultaneously with the help of a quadratic model of the
objective function, so do our TR-ICA algorithms.

TR-ICA algorithms took much less number of iterations
for convergence, compared to the gradient or the natural
gradient ICA algorithms and took almost same number of
iterations as Newton-type ICA algorithms. The TR-ICA (with
the dogleg) algorithm ate up more CPU time due to its time
complexity when the data dimensional grows, compared to
the natural gradient ICA algorithm. But it required less CPU
time, compared to the Newton method. The TR-ICA (with the
subspace) showed the best convergence performance in terms
of both iteration numbers and CPU time. In fact, our paper
is the first application of the trust-region method to ICA. We
are currently working on improving and speeding up TR-ICA
algorithms.
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