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Abstract— A trust-region method is a quite attractive opti- its stability is always guaranteed, in contrast to the Nevsto
mization technique, which finds a direction and a step size in an method.
efficient and reliable manner with the help of a quadratic model In this paper, we present trust-region-based ICA (TR-ICA)

of the objective function. It is, in general, faster than the stepest . . . S
descent method and is free of a pre-selected constant Iearningallgorlthms in the framework of maximum likelihood ICA so

rate. In addition to its convergence property (between linear that our algorithms carry the useful properties that tragien
and quadratic convergence), its stability is always guaranteed, in methods have. As practical implementation, we consider the

contrast to the Newton's method. In this paper, we present an dogleg method, two-dimensional subspace method, and the

efficient implementation of the maximum likelihood independent Steihaug method which are briefly reviewed in Sec. II
component analysis (ICA) using the trust-region method, which o

leads to trust-region-based ICA (TR-ICA) algorithms. The use- I
ful behavior of our TR-ICA algorithms is confirmed through
numerical experimental results. The simplest form of ICA considers the noise-free linear

generative model where the observation data) € R" is
assumed to be generated by

Independent component analysis (ICA) is a statistical
method that decomposes a multivariate data into a linear (t) = As(1), @)
sum of non-orthogonal basis vectors with basis coefficienfgere A ¢ R"*™ containsn basis vectorsa; € R™, i =

being statistically independent. A variety of approaches §....,n in its columns ands(t) € R is a latent variable
ICA have been developed. These include maximum likelihoQg tor whose elements (¢) are mutually independent.
estimation, mutual information minimization, output @y | general, ICA can be illustrated by a probability density
maximization (infomax), an_d negentropy maximization (Seﬁatching problem [2], [4] which, in fact, turned out to be
[5], [7] and references therein). All these approachestea@h oqyivalent to infomax, mutual information minimizatiomca
identical objective function in ICA. A popular implemeriat  ,avimum likelihood estimation [3].

in these approaphes, is gradient-dgscent learning '(i'mrgud Let us denote the observed density and model density by
the natural gradient). Although gradient-based algorsttare p°() andp(z), respectively. The probability density matching
simple and guarantee the local stability, but they areiv@ist s the parametersy, which best match the observed density
slow and require a carefgl ch0|ce.of a learning rate, wh|9;1>(m) and the model density(z). When the Kullback-Leibler
are cumbersome in practical apphcatlons._ In order to OV&divergence is used as a distance measure, the probability
come these drawbacks, Newton-type algorithms were recenibnsity matching is also referred to as the Kullback matghin

. INDEPENDENTCOMPONENTANALYSIS

I. INTRODUCTION

proposed [1], [12]. _ _ . ~__ which leads to the risk that has the form

A trust-region method is a quite attractive optimization
technique, which finds a direction and a step size in an efiicie R = KL]p°(z)||p(x)]
and reliable manner with the help of a quadratic model of the o p°(x)
objective function [10]. It defines a region around the cofre - /p () log p(x) dz. 2)
iterate within which they trust the model to be an adequate . - .
representation of the objective function, and then chobse {Note that the model density(x) satisfies the following

step to be the approximate minimizer of the model in thisttru&'2ton:

region. In effect, they choose the direction and length ef th -

step simultaneously. If a step is not acceptable, they ethe log p(x) = — log|det A| + Z log pi(s:). ©)
size of the region and find a new minimizer. The step direction =t

changes whenever the size of the trust region is alteresl.itii Define W = A™!, then the estimates of latent variables are
general, faster than the steepest descent method and isffreg = Wx. With these definitions, the risk can be rewritten as
a constant learning rate unlike the conventional gradiased

methods. Instead, the trust-region takes the place ofitearn R = —log|det W| — E Zlogpi(yi) 7 (4)
rate. Its convergence is between linear and quadratic rate a P



where E{-} denotes the statistical expectation operator. Theherep < R" represents the step a@® e R7 >’ s

natural gradient ICA algorithm updatd¥ by some symmetric matrix and
WD =w® {1 - E{e@y"}}w®, 5 fo = fw®),
. . . . : 0
wherey > 0 is the learning rate and(y) is then-dimensional vk 8—f :
element-wise function whoséh elementy; (y;) is the negative Wlw=w®
— _dlogpi(yi) (7)

score function, i.e.p;(y;) = 5

A line search method based on this model searches along
the step to the minimizer of modeh(®), but this direction

In this section, we briefly review a basic idea and practicallows only a small reduction irf even if an optimal step
implementation of trust-region methods. Refer to [10] fois taken. A gradient direction does not use the information

Ill. TRUSTFREGION METHODS

further details. of B, the rapid convergence can be expected onlgf’
) plays a role in determining the direction of the step as well a
A. Basic Idea its length.

Trust-region methods [10] define a region around the currentA trust-region method, on the other hand, steps to the
iterate within which they trust the model to be an adequakeinimizer of m(*) within the trust-region circle, which yields
representation of the objective function, and then chohse @ more significant reduction iffi and a better step. The step
step to be the approximate minimizer of the model in thisttrup is obtained by solving the following subproblem:
region. In effect, they choose the direction and length ef th T 1
step simultaneously. If a step is not acceptable, they ethe  min  m* (p) = f*®) + {Vf(’")} p+-p"B¥p,  (8)

. - . A <A 2
size of the region and find a new minimizer. In general, théP
step direction changes whenever the size of the trust regiofyhere A*) > 0 is the trust-region radius anfi- || is the

altered. Euclidean norm. The solutiop!") of Eq. (8) is the minimizer
of m*® in the ball of radius/A®,

Trust-Region Step
of!Quadratlc model B. Algorithm
," Line Search Direction

of Quadratic model The first issue in defining a trust-region method is the

strategy for choosing the trust-region radids’™ at each
iteration. Our choice ofA(%) is based on the agreement
between the model functiom(*) and the objective function
f at previous iterations. Given a stgp*), this agreement
measurep*) is defined as the ratio ofictual reduction to
predicted reduction, i.e.,

A P T T 0) — m® (p®)y ©

i
Gradient
Direction

Note that the predicted reductiom®)(0) — m®) (p*)), is
always nonnegative since the stpf” is obtained by mini-
mizing the modelm*) over a region that includes the step
p = 0. Thus if p*) is negative, the new objective value
Fig. 1. An illustration of the trust-region method in determgna direction £ (w(k) + p(k)) is greater than the current ValLﬁ(w(’“)),
and a step size with the help of a quadratic model of the olgedtinction. . :
so the step must be rejected. On the other hang (% is
) o ) 2 close to 1, there is good agreement between the madel
Let us consider an objective functigf{w) : R" — R 10 and the functionf over this step, so it is safe to expand the
be minimized with respect to the parameterc R™ . Fig. 1 tryst region for the next iteration. |5(*) is positive but not
illustrates a trust-region approach for the minimizatidrad  cjose to 1, we do not alter the trust region, but if it is close
objective functionf in which the current pointv*) lies at one to zero or negative, we shrink the trust region.
end of a curved valley while the mianizar_* lies at the other |y general, trust-region methods are faster than gradient
end. A quadratic model fun_ct|om< ) which has elliptical methods and guarantee the stability regardless of initiat ¢
contours, is based on function and derivative information gitions whereas Newton’s method does not. In a practical
w! ). and possibly also on information accumulated fromgnsideration, a solution to Eq. (8) is very important areteh
previous iterations and steps: are some approximate solutions such as the dogleg method,
T 1 the two-dimensional subspace minimization, and the Stigiha
k k k T k .
m® (p) = f*) 4 {Vf( )] p+5p BWp, (6) method. In this paper we use the dogleg method and the

Contours of



subspace method which is implemented throughfthi@unc

. . Optimal trajectory
function in Matlab Toolbox.

Trust Region

- - Trust-Region Step
(Trust-Region Algorithm) v

Given A >0, A € (0,2), and¢ € [0, 1):

for k=0,1,2,...
Find p*) which (approximately) solves Eq. (8
Evaluatep®) from Eq. (9);

7 / Full Step

Contours of model m*

if (k) 1 thenA(k"rl) — 1j|pk) | BN
P < 4’ 4 ||p || Gr adi ent Dogleg
else then Direction Path

it p > 3 and [pM]| = A®), then
AR — min(2AH) | A)
else then A+ = A(K):

Fig. 2. The optimal trajectory and the dogleg approximation.

following subproblem:

T
if p*) > ¢, thenw* 1) = w® 4+ p*) min m® (p) = f + [Vﬂk)} p+ %PTB(k')p’
else thenw 1) = k) Ipll<at 1
end (for) st.pe span[vf(’”, (B(k:)> vf(k)] . (10)

When B contains negative eigenvalues, the two-dimensional
subspace in Eqg. (10) is changed to

C. Dogleg, Subspace, and Seihaug span[Vf(’“), (B(’“) N 51)_1 Vf(’“} ’ 1)

In Eq. (6), whenB is positive definite, the unconstrained,, someé € (—Ai, —2X\;] where \; is the most negative
minimizer of m is the full steppy = —B ™'V f. When this eigenvalue ofB®.

point is feasible for Eq. (8), we havel" = pj for A > The Steihaug method is based on the conjugate gradient
P WhenA is tiny, the restriction|p|| < A ensures that gigorithm, an iterative algorithm for solving linear sysie

the quadratic term inn has little effect on the solution of yith symmetric positive definite coefficient matrices. Henc
Eq. (8). The true solutiop is approximately the same as the; js expected to converge to a solution faster, especialty f

solution we would obtain by minimizing the linear f””Ctiorhigh-dimensional data.

f+Vfipover|p| < A, that is,p ~ AL whenA

: IvFo D. Local Sability Analysis
is small.

For intermediate values of\, the solutionp, typically Trust-region methods guarantee the local stability, wiéch

. . I stated in the following theorem (See [10] for the proof).
follows a curved trajectory like the one in Fig. 2. The dogleg Theorem 1: Suppose that|B(’“)|| < 3 for some constant

method finds an approximate solution by replacing the curved

trajectory forp, with a path consisting of two line segments..’ tr('gt f s bounded below_ on the Ie_vel séw| f(w) s
The first line segment runs from the origin to the unconslminf(w )}, and that all approximate solutions of Eq. (8) satisfy

minimizer along the steepest descent direction defined g‘ye inequalities

_ vf'vf : : (k)
Py = ——2r5->% V[, while the second line segment runs HVf H
vf Bv _ &) (0) — m®F) (k& FE)| mj (k) I = 1l
from p,, t0 py (See Fig. 2). m(0) —m (p ) Z e[V min | AT, ‘B(k)H ’

The dogleg algorithm is an effective method whéhis
positive definite. IfB is not positive definite, its information where0 < ¢; < 1 and Hp(k-)” < ~vA®) for somery > 1.
is discarded so that only steepest descent direction isigagl If ¢ < (0, i) in the trust-region algorithm ang is Lipschitz
When B is positive definite and the full step is in the trustcontinuously differentiable, then we have
region, then thep becomes the full step. Otherwise the step ] *)
p is at the point of intersection of the dogleg path and the kl;ﬂ;@ VY =o.
trust-region boundary. Remarks: The Cauchy poinp! is a point that minimizes
Compared to the dogleg method, the subspace method® along the steepest descent direction. It can be shown that
widens the search fop to the entire two-dimensional sub-the Cauchy pointpgk) satisfies above inequality with; =
space spanned by; and p;;, when B is positive definite. % This implies that the dogleg, two-dimensional subspace
For positive definiteB, the subspace method considers thinimization and Steihaug method satisfy above inequality



with ¢; = 3, because they all produce approximate solutiofmve the form
p® for which m™® (p() < m(*) (pgm)_

N n
1
—log |W| - I ZZlogpj(yi(t))
t=11i=1
N n

1
—log |[W| + N Z Z log cosh(ay; (t)),

t=1 i=1

N n
~log W]~ < 3> logp; (ui()

t=1 i=1

fH(w)

IV. TR-ICA

Popular ICA algorithms are based on the gradient or the/ (w)
natural gradient method. Recently Newton or quasi-Newton N
method were applied to ICA [1], [12]. Trust region methods 1 4
carry some useful properties such as super-linear conveege ~log |[W| + BN Z Z yi (8),
(between linear and quadratic convergence), local stataind o o
adjustable learning rate. To our best knowledge, trusbreg whereq, 5 are positive normahzmg cpnstants_ that are chosen
methods have never been employed in ICA, yet. In this sectichch thap} andp; are eligible density functions.

we develop TR-ICA algorithms using the dogleg method ard s adient Descent Learning: Backtracking
the subspace method.

t=1 i=1

In contrast to using a constant learning rate in the gradient

In general, trust-region methods require the Hessian mMatfescent method, the backtracking method exploits the blaria
of the objective function and the evaluation of the obJeI:tlvstep size. which is summarized below.

value at the current parameter estimate. To this end, we
consider the quasi maximum likelihood ICA [11] and describe | (Backtracking line search)

our TR-ICA algorithms for exemplary objective functions fo | Choosen(©), p, ¢ € (0,1); setn — n(;
super- and sub-Gaussian sources so that the objectivesvalue repeat

can be easily evaluated. This can be easily generalized to . . T
any other objective functions in ICA. For the Hessian matrix until f <w(k) + ap(k)) < f ten [Vf(k)} p
calculation, we use the result in [12]. n < pn;

end (repeat)

Terminate withn*) = 5

The quasi maximum likelihood ICA leads to the following
empirical risk:

In our numerical experiments, we use) = 1, p = 0.3,
c=0.3.

N n
1
R = —log|det W| — N Z Zlogpi(yi(t))' (12) B, Trus-Region Learning
t=11i=1

We define thex-dimensional element-wise functiaf(y) €
) ) ~R”™ by its ith element;(y;) = —log pi(y;). We denote the
Trust-region methods update the size of the trust-regioflement-wise 1st-order derivative and 2nd-order devieatif

estimate. Hence, we need to specify the probability densiyorresponding the risk in the quasi maximum likelihood )JCA
functionsp;(-). Here we consider two cases, each of whicly written as

corresponds to the super- and sub-Gaussian sources. N
Let us denote the super- and sub-Gaussian density function f(w) = — log | det W| + E DD Wilwilt),  (13)
by p; and p;, respectively. In the description of our algo- N =1 i=1
rithms, the parameter vectoris € R = vec(WT) where where the statistical average is replaced by the time agerag
ved-) is the vec-function which stacks the columns of theover N data points.
given matrix into one long vector. Regardless of super- or sub-Gaussian, the gradient and the

We consider two exemplary score functions that were usE§Ssian matrix of the objective function Eq. (13) are givgn b

in ICA . .,
Viw) = vec(—w- + oy om0 W) >l4)
dlo%m = —tanh(y;), V3f(w) = H+ D, (15)
dlog ;l; (1) 5 whereD € R™ *"" is a block-diagonal matrix which consists
Ty “Yis of n blocks, D, € R™*"™, which have the form

N
Dy = = 3 ol ()t (1), (16)

which lead to the objective functiong; (w) and f~ (w), that



2 2 . = . .
andH € R™ ™ consists of:? row vectors h.,,, that is given V. NUMERICAL EXPERIMENTS

by B We used 3 different data sets for our experiments. Datal
h,, = |[vec(a;a;)]", m=(i—1)n+j, (17) is a set of binary data which consists of mixtures of three
. . - . binary sources with 10000 data points for each source. Data2
fori=1,...,nandj =1,...,n. a; anda,; denote thejth ; . S
i 1 consists of mixtures of two speeches and one music sighal, al
column vector and théth row vector of A = W™ ". More ;
. : of them were sampled at 8 kHz. Data3 is composed of DNA
detailed results can be found in [12].

The TR-ICA algorithm with the dogleg method is Summar_nicroarray data with 95 dimension and 4027 genes [8], [9]
rized below. In the doalea method. the symmetric mafgis) and we reduced 95 dimension to 15 dimension by PCA in our
in £q. (6 i-S replacedg b)@/] the Hes,sian n%atm?f (w(’“>) in experiments. For binary data and sound data, three mixture

Eq. (15) signals were generated using the mixing matdgiven by
(Dogleg TR-ICA Algorithm) A —0.4667 2.0636 —0.5136 2
Given A > 0, A© ¢ (0, A), andc € [0, 1): =| 00680 23982 —0.1961 | (20)
for k—01.2 ’ T4 —2.5108 0.3002 0.2247

if V2f(w®) is positive definite, then Whe_re the condition number A is 11.12 (well-conditioned
if |V2f(w*)=IVF| < A, then mixing).
p® = V2 f(wk) -1y f In the gradient and the Newton method, the backtracking al-
else then gorithm was used to select the optimal learning rate. Thesef
p*) = intersec(Dogleg path, TR boundary) the gradient (or the natural gradient) ICA algorithm achiev
else then ' the convergence faster than the case where the constant or
® _ _ Vf'vf v annealing learning rate was used.
b = iV TBv f
Evaluatep®) from Eq. (9); 034r "« Gradient [0 lters] [L515 (5)]
-+ Natural Grad. [10 Iters] [1.515 (s)]
) < 1, then G- — 10 3 T o)
= - = \ ogle ers] [0. S|
glspe th2n4, then 2 T4 ”p ” 0.32 'l -4 Newtong ¢ [ 6 Iters] [1.203 (s)]
o t
if p® > 3 and|p®)|| = A®), then Soamp %
AFHD = min(2AKF) A) é 0sl ‘|‘
else then A+ = A ) S v
'j'.: 0.29 \‘
if o) > ¢, thenw® D = w®) 4 pk) Eio.zsf .
else thenw*+1) = (%) o 1 A
end (for) 3
0.26

C. Newton Method ‘A'*

The basic Newton step(*) is obtained by solving the A T R Itzaﬁonf T8 90
following symmetricn x n linear system
v2f(,w(k))p(k) _ —V_f('w(k)). (18) Fig. 3. Convergence comparison of several humerical optiiizahethods

in the quasi maximum likelihood ICA for a set of binary data.
For local stability, the search directigit®) is required to be a

descent direction, which is true if the Hessi®i f(w®)) is Fig. 3 shows the convergence comparison of several nu-
positive definite. If the Hessian matrix is not positive diééin merical optimization methods in ICA, which include: (1)
or is close to being singulap®) may be an ascent directiongradient; (2) natural gradient; (3) trust-region (fminyngt)
or may be excessively long. trust-region (dogleg); (5) Newton. As expected, the gnaidie
In order to guarantee descent direction in the case mwikthod required more iterations for convergence, compared
nonconvex objective function, we use the modified Cholesskye trust-region or Newton method. In this case, the Newton
factorization® [6], which automatically finds a diagonal matrixmethod required less number of iterations for convergence,
T such that the matrix’? f (w®))+T is positive definite. The but ate up the almost same amount of CPU time as trust-
iteration rule is given by region methods, due to the high time complexity of the Newton
(k+1) _ ,..(k) (k) method.

v =W tap, (19) In Fig. 3, one can observe that the objective value after
where the step size is determined by the backtracking linethe first iteration, did not decrease in the TR-ICA algorithm
search. The reason being is the trust-region method sometimes need

1The matlab code of modified Cholessky factorization by BriamcBers to control the size of the trust region without update. Oree t
is available at http://www.nmt.edu/ borchers/Idit.html. size of the trust region is determined, the trust-regionhmgt



showed rapid convergence, compared to the gradient-based
methods. The high CPU time in the gradient methods mainly
came from the part of finding the optimal learning rate using
the backtracking algorithm, in which at least several loops
were required to find out the step length and to evaluate the
objective value at each iteration.

For a set of microarray data (Data3), the convergence
comparison is shown in Fig. 4. The natural gradient method

TABLE |

PERFORMANCEINDEX

Methods Binary Data Sound Signal
Gradient 2.120849e-003| 6.173503e-003
Natural Grad.| 2.119711e-003| 7.293806e-003
TR fminunc | 2.129067e-003| 7.904882e-003
TR dogleg | 2.120963e-003| 7.906655e-003,
Newton 2.120963e-003| 7.906516e-003

achieved faster convergence than the gradient method in bot

iteration numbers and CPU time. Nevertheless, the trusbmne

method with the subspace method showed much faster conver-

gence than the natural gradient method in iteration numbetep simultaneously with the help of a quadratic model of the
as well as in CPU time. The dogleg method took less numbabjective function, so do our TR-ICA algorithms.

of iterations but ate up more CPU time, compared to the TR-ICA algorithms took much less number of iterations

gradient method. This resulted from that in the case of dpgl

for convergence, compared to the gradient or the natural

method, if the Hessian is not positive definite, then it thsowgradient ICA algorithms and took almost same number of
the Hessian and uses gradient direction in trust region. Tierations as Newton-type ICA algorithms. The TR-ICA (with
subspace method, however, can use the non-positive defitlite dogleg) algorithm ate up more CPU time due to its time

Hessian as stated in Sec. Ill.

0.36

Gradient [385 Iters] [55.422 (s)]
== Natural Grad. [302 Iters] [47.031 (s)]
— TR (fminunc) [ 32 Iters] [12.110 (s)]

- - TR (Dogleg) [245 lters] [87.062 (s)]

0.34

Objective Function Value
o o o o
SRR O9 @
S (2] [o5] w N

= :

o
N
N

o
N}

0.18 I I )
0 50 100 150

Iterations

Fig. 4. Convergence comparison of several numerical optimizahethods
in the quasi maximum likelihood ICA for a set of DNA microarraytala

In addition to the convergence comparison, we also carri
out the performance comparison in terms of the performan
index (PI) that is defined as

1 2j=1lgis]
n(n —1) <= max; |gi;|

n

D

i=1

Pl =

1, 1)

where g;; is the (i, j)-element of the global system matrix

complexity when the data dimensional grows, compared to
the natural gradient ICA algorithm. But it required less CPU
time, compared to the Newton method. The TR-ICA (with the
subspace) showed the best convergence performance in terms
of both iteration numbers and CPU time. In fact, our paper
is the first application of the trust-region method to ICA. We
are currently working on improving and speeding up TR-ICA
algorithms.
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