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ABSTRACT

We propose an extension of nonnegative matrix factoriza-
tion (NMF) to multilayer network model for dynamic my-
ocardial PET image analysis. NMF has been previously
applied to the analysis and shown to successfully extract
three cardiac components and time-activity curve from the
image sequences. Here we apply triple nonnegative-matrix
factorization to the dynamic PET images of dog and show
details of cardiac components. We think of the multiple
nonnegative-matrix factorization as a model that can learn
a hierarchical-parts representation.

1. INTRODUCTION

Positron emission tomography (PET) is a technique for mea-
suring the concentrations of positron-emitting radio-isotopes
within the tissue of living subjects. One of the most impor-
tant functions of PET is its ability to model biological and
physiological functions in the body by detection and model-
ing of regional concentrations of radioactivity in a particular
organ. It is then useful and important to obtain quantitative
information on the regional myocardial blood flow using dy-
namic PET scan.

Since the pioneering work by Barber on the quantitative
analysis [1] through principal components, several methods
and algorithms such as factor analysis have been applied to
analyze the dynamic PET image sequences. It is recently
shown that non-negative matrix factorization (NMF) could
be a suitable algorithm for the analysis. Most approaches
basically assume Gaussian statistics, which may not be ap-
propriate for gamma camera images, whereas NMF utilize
Poisson statistics as a noise model. This point fits in with the
fact that the gamma camera images really represent some
sort of photon counts.

However, the considerable amount of statistical noise
generated in short dynamic frames and small number of im-
age sequences make it difficult to identify the cardiac com-
ponents. The NMF algorithm is practically deterministic
model, and does not take the generated noise into account.
In order to describe and get rid of noisy factor, a proba-

bilistic model, which can originally give NMF in zero noise
level, is required. But it seems so difficult or intractable
even if it is really derived. We also point out that the suc-
cessful segmentation of cardiac components actually comes
from the constraint of non-negativity, not from using the
cost function associated to poisson noise model. Because of
these factors, when we attempt to obtain details of cardiac
components more than three, NMF do not show them. If the
number of hidden variables is more than three, each part is
broken down and its time-activity curve is shaken.

In this paper, we propose a hierarchical extension of
NMF for extracting smaller parts than those extracted by
NMF. We consider a multi-layer generative network model
with all weights and hidden variables nonnegative. A multi-
plicative algorithm for training the network model, which is
guaranteed to converge monotonically without the need for
setting any adjustable parameters such as learning rate, is
also proposed. This model parallels a multiple nonnegative-
matrix factorization of a given nonnegative matrix. We treat
the method as a model that can learn hierarchical parts rep-
resentation from complex structure data such as face and
hands. We show the possibility that the new method may
be also suitable for dynamic PET image analysis in nu-
clear medicine and report it. [2] To study the application
to dynamic PET image analysis, the method was applied
to myocardialH15

2 O PET images, in which we attempt to
segment detailed cardiac components and derive their time-
activity curves. The results are fully discussed.

2. NONNEGATIVE MATRIX FACTORIZATION

Let a set ofN training images be given as anp×N matrix
V , with each column consisting of thep non-negative pixel
values of an image. Denote a set ofq ≤ p basis images by
ap× q matrixW . Each image can be represented as a lin-
ear combination of the basis images using the approximate
factorization

V ≈WH (1)

whereH ∈ R
q×N is the encoding variable matrix. Dimen-

sion reduction is achieved whenq < p.



The PCA factorization requires that the basis images
(columns ofW be orthonormal and the rows ofH be mu-
tually orthogonal. It imposes no other constraints than the
orthogonality and hence allows the entries ofW and H

to be of arbitrary sign. Many basis images, or eigenfaces
in the case of face recognition, lack intuitive meaning, and
a linear combination of the bases generally involves com-
plex cancellations between positive and negative numbers.
The NMF representations allow only positive coefficients
and thus non-subtractive combinations. [3] [4] [5]

NMF imposes the non-negativity constraints instead of
the orthgonality. As the consequence, the entries ofW

andH are all non-negative, and hence only non-subtractive
combinations are allowed. This is believed to be compat-
ible to the intuitive notion of combining parts to form a
whole, and is how NMF learns a parts-based representation.
It is also consistent with the physiological facts that the fir-
ing rates are non-negative and the signs of synapses do not
change.

NMF uses the I-divergence ofV from WH, defined as

D(V ||WH)

=
∑

i,j

(

V ij log
V ij

(WH)ij

− V ij + (WH)ij

)

(2)

as the measure of fitness for factorizingV into WH. An
NMF factorization is defined as

min
W ,H

D(V ||WH) (3)

s.t W ,H ≥ 0 (4)

whereW , H ≥ O means that all entries ofW andH are
non-negative.D(V ||WH) reduces to Kullback-Leibler di-
vergence when

∑

i,j V ij =
∑

i,j(WH)ij = 1. The above
optimization can be done by using multiplicative update rules.

Haµ ←Haµ

∑

i W iaV iµ/(WH)iµ
∑

k W ka

W ia ←W ia

∑

µ HaµV iµ/(WH)iµ
∑

ν Haν

(5)

The algorithm performs both learning and inference simul-
taneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible vari-
ables. Although the generative model is linear, the inference
computation is nonlinear due to the non-negativity constraints.
The computation is similar to maximum likelihood recon-
struction in emission tomography, and deconvolution of blurred
astronomical images.

Although NMF is successful in learning facial parts and
semantic topics, this success does not imply that the method
can learn parts from any database, such as images of objects
viewed from extremely different viewpoints, or highly ar-
ticulated objects. Learning parts for these complex cases is

likey to require fully hierarchical models with multiple lev-
els of hidden variables, instead of the single level in NMF.
[3]

3. MULTIPLE NONNEGATIVE-MATRIX
FACTORIZATION

There are a large number of neurons in inferior temporal
cortex of monkeys which seem to encode an overall shape
of biologically important objects - not specific features or
parts. [6] The finding agrees with hierarchical theories of
object perception. According to these theories, cells in the
cortical areas code elementary features such as line orienta-
tion and color. The outputs from these cells are then com-
bined by detectors sensitive to higher-order features suchas
corners or intersections, an idea consistent with the findings
of Hubel and Wiesel. The process is continued as each suc-
cessive stage codes more complex combinations. At the top
of the chain are IT neurons, selective for complex shapes
like hands or faces. A huge number of hierarchical models
for object recognition have been proposed over the years.
Some of them were inspired by the desire to build intelligent
machines, others by the desire to describe human recogni-
tion processes. [7]

In this paper, we will try to invert the hierarchical recog-
nition processes and view the visual perception as a hypoth-
esis testing process. Helmholtz, in his doctrine of uncon-
scious inference, argued that perceptions are formed by the
interaction of bottom-up sensory data with top-down expec-
tations. According to one interpretation of this doctrine,
perception is a procedure of sequential hypothesis testing.
We propose a new algorithm, called multiple nonnegative-
matrix factorization, that realizes this interpretation in lay-
ered networks. It uses top-down connections to generate
hypotheses, and bottom-up connections to revise them.

How can we build such a hierarchical structure of spe-
cial neurons which are responsible only for local sensory
features by multi-layer generative model? We have already
known that NMF can give local features and sparse codes
from given non-negative data set. It is just a single-layer
generative network and gives local features and sparse codes.
Then what about multi-layer network with nonnegative weights
and hidden variables? It is what we will introduce in this
section. The previous notations ofW andH are changed
into W

(1) andH
(1). We start by assuming further genera-

tions:

H
(l) = W

(l+1)
H

(l+1) (6)

wherel = 1, 2, · · · , L−1. Then we can construct aL-layer
nonnegative networks as shown in fig. 1. It is basically a
generative model and constructs the nonnegative input data
at its bottom layer. Before we show how it finds the hierar-
chical features from the nonnegative data, we should think



Fig. 1. Multilayer network model of multiple nonnegative-
matrix factorization: This shows an architecture of the mul-
tilayer network with an input layer and three hidden layers.

of the algorithm which we can find the optimized values of
weights and hidden variables with.

In order to extend NMF to multiple nonnegative-matrix
factorization, let us intruduce two matricesR andN to the
update rules of equation (5):

Haµ ← Haµ

∑

i W ia
V iµ

(WH)iµ
∑

k W ka

= Haµ

∑

i W iaRiµ
∑

k W kaNkµ

= Haµ

(W T
R)aµ

(W T
N)aµ

W ia ← W ia

∑

µ

V iµ

(WH)iµ

Haµ

∑

ν Haν

= W ia

∑

µ RiµHaµ
∑

ν N iνHaν

= W ia

(RH
T )ia

(NH
T )ia

(7)

whereR = R
(1) is a matrix of ratios ofV to WH and

N = N
(1) is a normalizer with all elements1. If we put

R = V and N = WH, the above rules are for least
squared error under nonnegativity. In fact the formulation
includes all NMF for optimizing any form of cost function.
If we also obtain the matrixR(l) andN

(l) at lth layer of
the networks, we can optimize the multi-layer networks by
using the same update rules at all layers:

W
(l)
ia ←W

(l)
ia

(R(l)
H

(l)T )ia

(N (l)
H

(l)T )ia

(8)

and

H
(L)
aµ ←H

(L)
aµ

(W (L)T
R

(L))aµ

(W (L)T
N

(L))aµ

(9)

Fortunately, theR(l) andN
(l) matrices are calculated by

the following up-propagation rules:

R
(l+1) = W

(l)T
R

(l)

N
(l+1) = W

(l)T
N

(l) (10)

wherel = 1, 2, · · · , L− 1.
However, the multilayer network model without using

nonlinear transfer function could be functionally degener-
ated into a single layer model. The data reconstructed from
all W

(i) andH
(L) just fill a linear subspace, and cannot

make a nonlinear manifold which the given data matrixV

orginally lies on. Thus we should consider the nonnegative
multi-layer model with nonlinear transfer functions instead
of equation (6):

H
(l)
aµ = g

(

(W (l+1)
H

(l+1))aµ

)

(11)

where the nonlinear transfer functiong must output a non-
negative value. Although we insert the nonlinearity between
successive layers, the NMF algorithms (8) and (9) are kept
on. The up-propagation rules (10) are then changed into

R
(l+1)
iµ = (W (l)T

R
(l))iµg

′

(

(W (l+1)
H

(l+1))iµ

)

N
(l+1)
iµ = (W (l)T

N
(l))iµg

′

(

(W (l+1)
H

(l+1))iµ

)

where

R
(1)
iµ =

V iµ

(W (1)
H

(1))iµ

g
′

(

(W (1)
H

(1))iµ

)

N
(1)
iµ = g

′

(

(W (1)
H

(1))iµ

)

. (12)

The proposed algorithm is similar with error up-propagation
algorithm for multi-layer neural network model, but is also
different in several aspects. [8] The error up-propation algo-
rithm propagates the error, whereas the proposed algorithm
should propagate normalizing factors as well as ratios of in-
puts to reconstructed values. Besides, note that the ratios
and normalizers should be up-propagated every time before
each weights matrixW (l) is updated.

4. APPLICATION TO DYNAMIC PET IMAGES

We analyzedH15
5 O PET scans performed on seven dogs

at rest and after pharmacological stress using Adenosine or
Dipyridamole [2] [9]. All the scans were acquired with an
ECAT EXACT 47 scanner (Simens CTI,Knoxville, USA)
wich has an intrinsic resolution of 5.2 nn full width at half
maximum and images 47 continuous planes with thickness
of 3.4 mm simultaneously for a longitudinal field of view of
16.2 cm. BeforeH15

5 O administration, transmission scan-
ning was performed using three Ge-68 rod sources for at-
tenuation correction. Dynamic emission scans (5sec×12,
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Fig. 2. Basis images (column vectors ofW
(1)

W
(2)) and

their time-activity curves (row vectors ofH
(2) obtained us-

ing triple factorization (two layer networks with nonnega-
tivity) from a dog PET data at rest

10sec×9, 30 sec×3) were initiated simultaneously with the
injection of 555-740 MBqH15

5 O. Transaxial images were
reconstructed by means of a filtered back-projection algo-
rithms as 128×123×47 matrices with a size of 2.1×2.1×3.4
mm.

The initial eighteen frames (two minutes) of PET im-
ages were used for analysis. The dynamic PET images were
re-oriented to short axis and were re-sampled to produce 1-
cm-thick slices in order to increase the signal to noise ra-
tio. Only the cardiac regions were masked to remove ex-
tra cardiac components and to reduce the quantity of data
and hence the burden of computation. The resulting masked
images with dimension of 32×32×6×18 (pixel× pixel ×
plane× frame) were reformulated to 6144×18 (pixel ×
frame) data matrixX.

The fig. 2 shows the basis images and their time-activity
curve extracted by using the two layer nonnegative network.
The three bases of the figure are left ventricle, right ventri-
cle and myocardium, respectively. The bases represent the
column vectors of the product ofW (1) andW

(2) and the
values of 18 points of curves are from row vectors ofH

(2).
These results are converged to those from NMF, as the num-
ber of hidden variables of the bottom layer increases. 12
hidden variables are used in this analysis. Thus, the 12 de-
tailed parts are extrated as shown in fig. 3. The three cardiac
components are constructed by weighted summation of 12
parts. The weight values are indicated in fig. 5.It seems that
a few of parts contain redundant information for three car-

Fig. 3. Basis images (column vectors ofW
(1)) obtained

using triple factorization from a dog PET data at rest

diac components. But we can learn that the detailed parts
function as independent factors by carefully considering the
weight values of fig. 5. For example, the 3, 4, 5, 6 and 10th
parts look like the intensity-scaled replica of left ventricle
by the curves of fig. 4. But the detailed parts are also used
in constructing the other cardiac components with different
weights. This tells that the detailed parts contribute to con-
structing the three major features independently. The right
ventricle consists of 2, 7, 8, 9 and 12th parts of figure 4.
We can discriminate 2, 7 and 12th parts from 8th and 9th
parts without trouble. The former parts don’t contribute to
left ventricle, but the latter parts considerably contribute to
right ventricle. The myocardium is mainly from 11th part
and partly from the first part. The myocardium also uses the
5th part fairly, which the left ventricle shares.
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Fig. 4. Time-activity curves (row vectors ofW (2)
H

(2))
obtained using triple factorization from the dog PET data at
rest
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Fig. 5. Normalized coefficients of detailed parts used in
contructing the three cardiac components
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