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Abstract— In the human brain, it is well known that per-
ception is based on similarity rather than coordinates and
it is carried out on the manifold of data set. Isomap [1] is
one of widely-used low-dimensional embedding methods, where
approximate geodesic distance on a weighted graph is used
in the framework of classical scaling (metric MDS). In this
paper we consider two critical issues missing in Isomap: (1)
generalization property; (2) topological stability and present our
robust kernel Isomap method, armed with such two properties.
The useful behavior and validity of our robust kernel Isomap,
is confirmed through numerical experiments with several data
sets including real world data.

I. INTRODUCTION

Human brain distinguishes an object from others based on
the similarity or (dissimilarity) between objects. In the human
brain, perception process is based on similarity rather than
coordinates. Especially, the recognition of a new data is based
on the similarity between the new data point and training
data points and the perception is carried out on the manifold
of data set using the similarities. Recently, various manifold
learning methods have been developed in machine learning
community and their wide applications stated to draw an
attention in pattern recognition, signal processing, robotics
as well as in developmental learning community. Isomap
is one of representative isometric mapping methods, which
extends metric multidimensional scaling (MDS), considering
approximate geodesic distance on a weighted graph, instead
of Euclidean distance [1].

Classical scaling (that is one of metric MDS) with Euclid-
ean distances as the dissimilarities, is explained in the context
of PCA [2], so that it provides a generalization property (or
projection property) where new data points (which do not
belong to a set of training data points) can be embedded in
a low-dimensional space, through a mapping computed by
PCA. In the same manner, a non-Euclidean dissimilarity can
be used, although there is no guarantee that the eigenvalues
are nonnegative.

The approximate geodesic distance matrix used in Isomap,
can be interpreted as a kernel matrix [3]. However, the
kernel matrix based on the doubly centered approximate
geodesic distance matrix, is not always positive semidefinite.
We mainly exploit a constant-adding method such that the

geodesic distance-based kernel matrix is guaranteed to be
positive semidefinite. Mercer kernel-based Isomap algorithm
has a generalization property so that test data points can be
successfully projected using a kernel trick as in kernel PCA
[4], whereas general embedding methods (including Isomap)
do not have such a property.

We can use this projection property to make retrieval sys-
tem where query is a data point such as image. For example,
in the information retrieval problem, the document itself
could be a query in contrast to the conventional information
retrieval system. This retrieval is also important to recognize
a new point based on the training data points because we
compare new data with training data sets on the manifold in
order to understand it. This is also important in robot vision.
When a robot see an object, the robot can recognize it based
on the manifold which is constructed from training data set.

In addition to the positive semidefinite problem, some
noise data make it very difficult to find the low-dimensional
manifold, because of short-circuit edges which connect di-
rectly two subspaces through the outside of the manifold [5].
For example, one noise data point between two surfaces can
connect the surfaces if the number or size of neighborhood is
large enough. To overcome this situation, we use the concept
of network flow in graph. First, we assume that in the original
manifold the data points are uniformly distributed and the
network flows have proper values. Removing the noise point
which have extraordinary value of flow, we can recover the
smooth nonlinear manifold from the noisy data set.

In this paper, we present kernel Isomap in Sec. II. Then,
we suggest a new approach, network flow, for the topological
stability in Sec. III. In Sec. IV, numerical experimental results
confirm the validity and high performance of our robust
kernel Isomap algorithm on noisy data set and show the
retrieval system using projection property.

II. KERNEL ISOMAP

A. Isomap as Kernel Method

The classical scaling, that is one of metric MDS, is a
method of low-dimensional embedding based on pairwise
similarity between data points. In general, Euclidean distance
is used as a measure of dissimilarity (or similarity) in MDS.
The basic idea in Isomap [1] is to use geodesic distances on a
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neighborhood graph in the framework of the classical scaling,
in order to incorporate with the manifold structure, instead of
subspace. The sum of edge weights along the shortest path
between two nodes, is assigned as geodesic distance. The top
n eigenvectors of the geodesic distance matrix, represent the
coordinates in the n-dimensional Euclidean space.

As pointed out in [6], metric MDS can be interpreted as
kernel PCA. In a similar fashion, Isomap can be considered
as a kind of kernel method [3]. We can take the approximated
distances D used in Isomap and consider the following
kernel:

K = −1
2
HD2H, (1)

where D2 means element-wise square of D, H is the
centering matrix, given by H = I − 1

N eeT , and e =
[1, . . . , 1]T ∈ R

N .
However, this kernel is not guaranteed to be positive

semidefinite. The reason why the kernel matrix of Isomap
is not positive definite in the smooth manifold, is mainly the
approximation of the geodesic distance and noise. So, we
propose kernel Isomap which has the noise robustness and
projection property.

B. Kernel Isomap

Given N objects with each object being represented by an
m-dimensional vector xi, i = 1, . . . , N , the kernel Isomap
algorithm finds an implicit mapping which places N points
in a low-dimensional space. In contrast to Isomap, the kernel
Isomap can project test data points onto a low-dimensional
space, as well, through a kernel trick. The kernel Isomap
mainly exploits the additive constant problem, the goal of
which is to find an appropriate constant to be added to all dis-
similarities (or distances), apart from the self-dissimilarities,
that makes the matrix K to be positive semidefinite. In
fact, the additive constant problem was extensively studied
in the context of MDS [7], [2] and recently in embedding
[8]. The matrix K̃ induced by a constant adding method,
has a Euclidean representation and becomes a Mercer kernel
matrix. The kernel Isomap algorithm is summarized below.

Algorithm Outline: Kernel Isomap

Step 1.Identify the k nearest neighbors (or ε-ball neigh-
borhood) of each input data point and construct a
neighborhood graph where edge lengths between
points in a neighborhood are set as their Euclidean
distances.

Step 2.(Shortest Path Problem) Compute approximate geo-
desic distances, Dij , containing shortest paths be-
tween all pairs of points and define D2 =

[
D2

ij

] ∈
R

N×N .

Step 3.Construct a kernel matrix K(D2) based on the
approximate geodesic distance matrix D2 as Eq.
(1).

Step 4.Compute the largest eigenvalue, c∗, of the matrix
[

0 2K(D2)
−I −4K(D)

]
, (2)

and construct a Mercer kernel matrix K̃ = K̃(D̃2)
by

K̃ = K(D2) + 2cK(D) +
1
2
c2H, (3)

where K̃ is guaranteed to be positive semidefinite
for c ≥ c∗.

Step 5.Compute the top n eigenvectors of K̃, which leads
to the eigenvector matrix V ∈ R

N×n and the
eigenvalue matrix Λ ∈ R

n×n.
Step 6.The coordinates of the N points in the n-

dimensional Euclidean space are given by
Y = Λ

1
2 V T .

A main difference between the conventional Isomap and
our kernel Isomap, lies in Step 4 which is related to the
additive constant problem that was well studied in metric
MDS. The additive constant problem aims at finding a value
of constant, c, such that the dissimilarities defined by

D̃ij = Dij + c(1 − δij), (4)

have a Euclidean representation for all c ≥ c∗ and δij is the
Kronecker delta. Substituting D̃ij for Dij in Eq. (4) gives
Eq. (3). For K̃ to be positive semidefinite, it is required that
xT K̃x ≥ 0 for all x. Cailliez showed that c∗ is given by
the largest eigenvalue of the matrix Eq. (2) (see Sec. 2.2.8
in [2]). Though several other constant-shifting methods can
also be used to make the geodesic kernel matrix to be positive
semidefinite, in this paper we use Eq. (4).

The matrix K̃ is a Mercer kernel matrix, so its (i, j)-
element is represented by

K̃ij = k(xi, xj) = φT (xi)φ(xj), (5)

where φ(·) is a nonlinear mapping onto a feature space or
a low-dimensional manifold. The coordinates in the feature
space can be easily computed by projecting the centered
data matrix onto the normalized eigenvectors of the sample
covariance matrix in the feature space,

C =
1
N

(ΦH) (ΦH)T
, (6)

where Φ = [φ(x1), . . . , φ(xN )].
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C. Generalization Property

As in kernel PCA, we can project a test data point tl in
the low-dimensional space by

[yl]i =
1√
λi

N∑

j=1

[vi]jk(tl, xj), (7)

where [·]i represents the ith element of a vector and vi is
the ith eigenvector of K̃. The geodesic kernel for the test
data point, k(tl, xj), in Eq. (7), is constructed by the kernel
matrix Eq. (3) for a set of training data points and geodesic
distances, Dlj , between test data points tl and all training
data points xj , j = 1, . . . , N . As in Eq. (4), Dlj is also
modified by

D̃lj = Dlj + c. (8)

Note that the geodesic distance D̃lj in the feature space, has a
Euclidean representation. Hence, the following relation holds:

D̃2
lj = [φ(tl) − φ(xj)]

T [φ(tl) − φ(xj)] . (9)

Taking into account that {φ(xj)} are centered, we have

1
N

N∑

j=1

D̃2
lj = φT (tl)φ(tl) +

1
N

N∑

j=1

φT (xj)φ(xj). (10)

Then, it follows from Eq. (9) and Eq. (10) that the kernel for
the test data point tl, is computed as

k(tl,xj) = φT (tl)φ(xj)

= −1
2

(
D̃2

lj − K̃jj − 1
N

N∑

i=1

D̃2
li − K̃ii

)
.(11)

The L-Isomap [9] involving landmark points and an out-
of-sample extension of Isomap (and other manifold learning
methods) [10], also shares a similar spirit with our projection
method in Eq. (7) and Eq. (11). However, their algorithm
depends on only the geodesic distances between test data
point and training data points and does not consider the kernel
matrix. That is, their formula which ignores the kernel part
in Eq. (11), can be considered as a special case of ours.

In addition, they uses geodesic distances, Dij , (not guar-
anteed to have a Euclidean representation in the feature
space) instead of constant-shifted distances, D̃ij . Therefore,
our kernel Isomap is a natural extension of Isomap using a
kernel trick as in kernel PCA.

D. Kernel Isomap vs. Kernel PCA

Relationship between MDS and PCA is essential to un-
derstand the relationship between kernel Isomap and kernel
PCA. For MDS, the Euclidean distance Dij from xi to xj

is

D2
ij = (xi − xj)T (xi − xj). (12)

Let the inner product matrix be B, where

Bij = xT
i xj . (13)

From some calculations, like Eq. (1), we can get

B = −1
2
HD2H = V MΛMV T

M = XT X, (14)

where V M and ΛM are the eigenvector and the eigenvalue
matrix of B, respectively. Finally, the recovered data Y M =
Λ1/2

M V T
M . For PCA,

XXT = V P ΛP V T
P , (15)

where V P and ΛP are the eigenvector and the eigenvalue
matrix of XXT , respectively. The recovered data Y P =
V T

P X . With V P = XV M , the relation of Y P and Y M is
following.

Y P = V T
P X = (XV M )T X = V T

MB = Λ1/2
M Y M . (16)

That is, in the case of Euclidean distance, PCA and MDS are
equivalent to each other with the ambiguity of the scale.

In the case of kernel Isomap and kernel PCA, kernel
Isomap has a positive semidefinite kernel matrix and has
a projection property like kernel PCA. In kernel PCA [4],
however, nonlinear kernel function should be chosen very
carefully to make kernel matrix. Different kernel function
makes different performance which depends on how properly
the kernel reflects the manifold of data set. To choose the
proper kernel for data set, the prior knowledge is required.
Especially, for complex data set such as swiss roll data,
it is very difficult to find the proper kernel function. In
kernel Isomap, the kernel matrix Eq. (1) is obtained from
the geodesic distances, so we do not need to choose a
certain kernel function. Moreover, the kernel matrix reflects
the manifold properly.

III. TOPOLOGICAL STABILITY

It was pointed out in [5] that Isomap could be topologically
unstable, depending on the neighborhood size in constructing
a neighborhood graph. The size of neighborhood is also
important in locally liner embedding (LLE) [11]. A relatively
large neighborhood size might result in short-circuit edges
which destruct the manifold structure of data points. An
easy way to avoid this short-circuit edges, is to decrease
the neighborhood size, but determining the size is not a
easy job. Moreover, a too small neighborhood size could
produce disconnected manifolds. The nodes causing short-
circuit edges are considered as outliers. Here we present a
heuristic method of possibly eliminating such critical outliers,
in order to make the kernel Isomap to be robust.

To this end, we consider network flows and define the
total flow for each node, in terms of the number of shortest
paths passing through the node. We claim that nodes causing
short-circuit edges have enormous total flow values. Thus,
evaluating total flow value for each node is a preprocessing
step, to eliminate critical outlier nodes.
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A. Network Flow

Definition 1: [12] Let G be a directed graph with vertex set
V and edge set E . A network flow is a non-negative function
defined on the edges; the value η(εk) is the value of flow in
the edge εk.
In this paper we assign the number of Dijkstra geodesic paths
(shortest paths) passing on the edge, as a network flow value,
η(εk).

Definition 2: The total flow, f(vk), of a node vk is the
sum of the network flows of edges connecting to the node
vk, i.e.,

f(vk) =
∑

vi∈Nk

η(ε(i, k)), (17)

where Nk is the neighborhood of the node vk (i.e., a set of
nodes connecting to the node vk) and ε(i, k) denotes the edge
connecting vi and vk.
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Fig. 1. Total flow of each data points for the case of noisy Swiss Roll
data (with isotropic Gaussian noise with variance 0.25). The number of
data points is 1200 (a) k-nearest neighborhood size is 5. (b) k-nearest
neighborhood size is 6. Some points having extremely large total flow are
considered as noise data.

Here, we assume that on a manifold, data points are scat-
tered uniformly. So, if the total flow of a point is extremely
high, the point can be considered as an noise which is off
the manifold and connects directly two subspaces. In Fig. 1,
we can see the changes of the total flows as the number of
neighbor increases. In (a), the total flows are well distributed,
whereas we can see extremely high values of total flow in
(b). In this case, not only conventional Isomap but also kernel
Isomap cannot find the true manifold because of the noise
and the projected data space is distorted (See Fig. 9 (a)). So,
in Fig. 1 (b) we consider 3 data points as noise data which
have extremely high total flow compared with other points. It
is not clear to determine the optimal threshold of total flow
which separates critical outliers from data points. Through
empirical study, we used the half of the largest total flow as
a threshold only for the case that data points are abnormally
scattered (with several erroneous peaks).

In our algorithm, when it finds the geodesic distances it
saves the paths. So, it does not require any extra computa-
tional time to the algorithm which finds shortest path.

B. Robust Kernel Isomap Algorithm

Table I shows the outline of the final algorithm. This
algorithm overcomes the short-circuit edge problem and gives
total noise-robust property as well as projection property.
Before calculating the kernel matrix, it eliminates the noise
data point which have extremely high total flow value. Then,
the geodesic distance matrix is calculated again and kernel
Isomap is used to find an manifold.

TABLE I
ROBUST KERNEL ISOMAP.

Construct a neighborhood graph.
Calculate geodesic paths.
Calculate total flows of nodes.
Eliminate outliers having extremely high total flow values.
Apply the Kernel Isomap to this preprocessed data set as in Sec. II-B.

IV. NUMERICAL EXPERIMENTS

A. Kernel Isomap

We compared our kernel Isomap algorithm to the con-
ventional Isomap algorithm, using Swiss roll data that was
also used in Isomap. Noisy Swiss roll data was generated
by adding isotropic Gaussian noise with zero mean and
0.25 variance (see Fig. 2 (a)). In the training phase, 1200
data points were used and the neighborhood graph was
constructed using k = 4 nearest neighbors of each data
point, respectively. As in Isomap, the shortest paths were
computed using the Dijkstra’s algorithm, in order to calculate
approximate geodesic distances.

An exemplary embedding result (onto 3-dimensional fea-
ture space) for Isomap and kernel Isomap, is shown in Fig.
2 (b) and (c). The generalization property of our kernel
Isomap is shown in Fig. 2 (d) where 3000 test data points are
embedded with preserving local isometry well. In this figure,
comparing (c) with (b), we can also see the noise robustness
of kernel Isomap. Even though the conventional Isomap also
looks like robust algorithm in 2 dimensional manifold, in 3
dimensional space, it is not robust any longer. The manifold
in (b) is not smooth while (c) is.

Applications of Projection Property: Projection property
can be applied to build a retrieval system where query is
a data point such as image whereas traditional information
retrieval is based on keywords. Our retrieval system searches
similar data points with the projected point of query data on
low-dimensional space. Actually, new data is recognized by
the relationship with training data set on the manifold which
is constructed by training data set. We built this system using
triangle data and US Postal Service (USPS) handwritten
digits.

First, triangle data set is composed of totally 400 triangle
images (20 shapes of triangle and 20 rotations from 0o to
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(a) (b)

(c) (d)

Fig. 2. Comparison of the conventional Isomap with our kernel Isomap for
the case of noisy Swiss Roll data: (a) noisy Swiss Roll data; (b) embedded
points using the conventional Isomap; (c) embedded points using our kernel
Isomap; (d) projection of test data points using the kernel Isomap. The
modification by the constant-adding in the kernel Isomap improves the
embedding with preserving local isometry (see (c)) as well as allowing to
projecting test data points onto a feature space (see (d)).

(a)

(b)

Fig. 3. The Composition of Triangle Data Set: (a) 20 different shapes; (b)
20 rotations of an triangle image

78o for each triangle). See Fig. 3. The dimension of triangle
image is 68 x 68. The low-dimensional space is shown in
Fig. 4. The result of kernel Isomap was a slightly rotated rec-
tangular of this one, so we applied Independent Component
Analysis (ICA) to find proper coordinates. Then, we found
same triangle images with query image disregarding the
rotation. The results of retrieval are shown in Fig. 5 and Fig.
6. These results show that kernel Isomap allows a machine to
recognize an object based on selected features and this could
be applied into robot vision (for example, face recognition
disregarding lighting effects). That is, the characteristics of
an object can be understood from the viewpoint of selected
features.

We applied this projection property into real world data,

Fig. 4. Triangle images on the 2-dimensional space. Vertical axis means
the shape of triangles and horizontal axis means the rotation of triangles.

Fig. 5. The result of retrieval. The circled point is a query and the asterisk
points are the results

USPS data set. We used a portion of the USPS, which
contains digit ’7’ and ’9’. Fig. 7 is the digit images projected
on the 2-dimensional space. We found same digits with
query digit disregarding the height-width ratio. The result
of retrieval is shown in Fig. 8. This result shows that kernel
Isomap could be applied into retrieval system which searches
similar data points regarding only selected features.

B. Topological Stability

In previous section, the performance and the generalization
property of kernel Isomap were confirmed. However, if the
neighborhood size increases, the manifold is distorted as in
Fig. 9 (a). This problem might come from noisy data or sparse
data. Fig. 9 shows that our proposed algorithm, robust kernel
Isomap, outperforms conventional Isomap. Isomap and kernel
Isomap have some problems with large number (> 5) of
neighborhood whereas our proposed Isomap is robust. If the
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(a) (b)

Fig. 6. Query point and the results in triangle data (a) Query image; (b)
The Results which have the same shape with query image

Fig. 7. Digit images on the 2-dimensional space. Vertical axis means the
height-width ratio and horizontal axis means how the upper line of digit is
rolled.

data set is sufficiently dense, then robust kernel Isomap can
find the low-dimensional manifold even in high-level noise
data set.

V. CONCLUSION

We have presented the kernel Isomap algorithm where the
approximate geodesic distance matrix could be interpreted as
a kernel matrix and an adding-constant method was exploited
so that the geodesic distance-based kernel became Mercer
kernel. Main advantages of the kernel Isomap could be
summarized as follows: (a) generalization property (i.e., test
data points can be projected onto the feature space using the
kernel trick as in kernel PCA); (b) robustness against low-
level noisy data. The generalization property will derive the
kernel Isomap to be useful for pattern recognition problems.
We tested the generalization property in retrieval system with
real world data.

Moreover, we proposed a technique to improve the robust-
ness on high-level noisy data where short-circuit edges could
be a problem to find the proper manifold. As shown above,
with the network flow, we could find the manifold from the
noisy data set. The concept of network flow to detect noise
data, can be applied into other manifold learning methods or
clustering algorithms.

The final algorithm, robust kernel Isomap, has generaliza-
tion property and robustness for both high and low level noisy
data set. These properties are expected to be very useful in
robot vision or document processing.

(a) (b)

Fig. 8. Query point and the results in USPS handwritten digits (a) Query
image; (b) The Results which are the same degree of rolling with query
image

(a) (b)

Fig. 9. Embedded manifolds according to different methods for the case of
noisy Swiss Roll data with the number of neighborhood 6: (a) Conventional
Isomap; (b) robust Kernel Isomap
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