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Abstract. Tree-dependent component analysis (TCA) is a generaliza-
tion of independent component analysis (ICA), the goal of which is to
model the multivariate data by a linear transformation of latent vari-
ables, while latent variables fit by a tree-structured graphical model. In
contrast to ICA, TCA allows dependent structure of latent variables and
also consider non-spanning trees (forests). In this paper, we present a
TCA-based method of clustering gene expression data. Empirical study
with yeast cell cycle-related data, yeast metabolic shift data, and yeast
sporulation data, shows that TCA is more suitable for gene clustering,
compared to principal component analysis (PCA) as well as ICA.

1 Introduction

Clustering genes from expression data into biologically relevant groups, is a valu-
able tool for finding characteristic expression patterns of a cell and for inferring
functions of unknown genes. Clustering is also widely used in modelling tran-
scriptional regulatory networks, since it reduces the data complexity [1]. On one
hand, classical clustering methods such as k-means, hierarchical clustering and
self-organizing map (SOM), have widely been used in bioinformatics. On the
other hand, linear latent variables models were recently used in the task of gene
clustering. This includes principal component analysis (PCA) [2], factor analysis
[3], independent component analysis (ICA) [4–6], independent subspace analysis
(ISA) [7, 8], and topographic ICA [9].

The underlying assumption in linear latent variable models, is that gene ex-
pression profiles (measured by microarray experiments) are generated by a linear
combination of linear modes (corresponding to prototype biological processes)
with weights (encoding variables or factors) determined by latent variables. In
such a case, latent variables indicates the portion of contributions of each lin-
ear mode to a specific gene profile. Clustering gene profiles can be carried out
by investigating the significance of latent variables and representative biologi-
cal functions directly come from linear modes of latent variable models. It was
shown that clustering by latent variable models outperforms classical clustering
algorithms (e.g., k-means) [5].



Tree-dependent component analysis (TCA) is a generalization of ICA, the
goal of which is to seek a linear transform with latent variables well-fitting by a
tree-structured graphical model, in contrast to ICA which restricts latent vari-
able to be statistically independent [10]. TCA allows the dependent structure
of latent variables and also incorporates with non-spanning trees (forests). In
this paper, we present a method of gene clustering based on TCA. We compare
the performance of TCA to PCA and ICA, for three yeast data sets, evaluating
the enrichment of clusters through the statistical significance of Gene Ontology
(GO) annotations [11].

2 Linear Latent Variable Models

Gene expression patterns measured in microarray experiments, result from un-
known generative processes contributed by diverse biological processes such as
the binding of transcription factors and environmental change outside a cell [4].
Genome-wide gene expression involves a very complex biological system and the
characteristics of biological processes is hidden to us. A promising way to model
such a generative process, is to consider a linear latent variable model such as
PCA and ICA.

The linear generative model assumes that a gene profile xt ∈ R
m (the ele-

ments of xt represent the expression levels of gene t at m samples or m time
points) is assumed to be generated by

xt = Ast + ǫt, t = 1, . . . , N, (1)

where A = [a1 · · · an] ∈ R
m×n contains linear modes in its columns and st ∈ R

n

is a latent variable vector with each element sit associated with the contribution
of the linear mode ai to the gene profile xt. The noise vector ǫt ∈ R

m takes
the uncertainty in the model into account and it is assumed to be statistically
independent of st. For the sake of simplicity, we neglect the noise vector ǫt. Then
the linear generative model (1) can be written in a compact form:

X = AS, (2)

where X = [Xit] ∈ R
m×N is the data matrix with each element Xit associated

with the expression level of gene t at sample i (or time i). The latent variable
matrix S ∈ R

n×N contains st for t = 1, . . . , N .
Given a data matrix X, latent variables S are determined by S = WX,

where the linear transformation W is estimated by a certain optimization method.
Depending on restrictions or assumptions on A and S, various methods includ-
ing PCA, ICA, and TCA have been developed. A brief overview of those methods
is given below.

2.1 PCA

PCA is a widely-used linear dimensionality reduction technique which decom-
poses high-dimensional data into low-dimensional subspace components. PCA is



illustrated as a linear orthogonal transformation which captures maximal varia-
tions in data. Various algorithms for PCA have been developed [12–14]. Singular
value decomposition (SVD) is an easy way to determine principal components.

The SVD of the data matrix X ∈ R
m×N is given by

X ≈ UDV
⊤, (3)

where U ∈ R
m×n (n ≤ m) contains n principal left singular vectors (eigenvec-

tors) in its columns, D ∈ R
n×n is a diagonal matrix with eigenvalues on diagonal

entries, and V ∈ R
N×n contains n right singular vectors in its columns.

In the framework of gene expression data analysis, the n column vectors of
U correspond to eigengenes and the n column vectors of V are associated with
eigenarrays. Exemplary applications of SVD or PCA to gene expression data,
can be found in [15, 2].

2.2 ICA

ICA is a statistical method which model the observed data {xt} by a linear
model {Ast} with restricting non-Gaussian latent variables st to have statis-
tically independent components. In contrast to PCA where the multivariate
data is modelled by an orthogonal transformation of independent (or uncor-
related) Gaussian latent variables, ICA seeks a non-orthogonal transformation
that makes non-Gaussian components to be as independent as possible. Refer to
[16–18] for details and recent review of ICA.

The non-Gaussianity constraint for independent components, is very useful
in the gene expression data analysis. Hidden biological processes affect only a
few relevant genes and a large portion of genes remains unaffected. Gaussian
distribution does not model this encoding process correctly. In fact, heavy-tailed
distributions are more suitable for encoding variables {st} in gene expression
data [5, 4]. The independence assumption on hidden variables {st} was shown to
be an effective hypothesis for separating linearly-mixed biological signals in gene
expression data. Despite of this effectiveness of the independence assumption, it
is not realistic since biological systems are known to be highly inter-connected
networks.

2.3 TCA

For the sake of simplicity, we omit the index t in both xt and st, unless it is
necessary. As in ICA, we also assume that the data is pre-processed by PCA
such that its dimension is reduced down to n. TCA is a generalization of ICA,
where instead of seeking a linear transformation W that makes components
{si} independent (si is the ith-element of s = Wx), it searches for a linear
transform W such that components (latent variables) {si} well-fit by a tree-
structured graphical model [10]. In TCA, si are referred to as tree-dependent
components. In contrast to ICA, TCA allows the components si to be dependent
and its dependency is captured by a tree-structured graphical model. Thus, it is



expected that TCA will be more suitable for gene clustering than ICA, since it
is more realistic in seeking hidden biological processes. A brief overview of TCA
is given below, and see [10] for more details.

Let us denote by T (V , E) an undirected tree, where V and E represent a set
of nodes and a set of edges, respectively. The objective function considered in
TCA model, involves the T -mutual information IT (s):

J (x, W , T ) = IT (s)

= I(s1, . . . , sn) −
∑

(i,j)∈E

I(si, sj), (4)

where I(·) is the mutual information. Note that in the case of ICA, only the
mutual information I(s1, . . . , sn) serves as the objective function. The objective
function (4) results from the minimal KL-divergence between the empirical dis-
tribution p(x) and the model distribution q(x) where the linear model x = As

is considered and s is assumed to factorize in a tree T .
In terms of entropies (denoted by H(·)), the objective function (4) can be

written as

J (x, W , T ) =
∑

j

H(sj) −
∑

(i,j)∈E

[H(si) + H(sj) − H(si, sj)]

− log | detW |, (5)

where H(x) is omitted since it is constant. The objective function (5) involves
the calculation of entropy, which requires the probability distribution of s that
is not available in advance. Several empirical contrast functions were considered
in [10]. These include: (1) kernel density estimation (KDE); (2) Gram-Charlier
expansion; (3) kernel generalized variance; (4) multivariate Gaussian stationary
process-based entropy rate. In the case of ICA, Gaussian latent variables are not
interesting. In such a case, the transformation W is defined up to an orthogonal
matrix. On the other hand, TCA imposes a tree-structured dependency on latent
variables, hence, this indeterminacy disappears and the transformation W can
be estimated with a fixed tree T .

Incorporating with a non-spanning tree in TCA allows us to model inter-
cluster independence, while providing a rich but tractable model for intra-cluster
dependence. This is desirable for clustering since an exact graphical model for
clusters of variables would have no edges between nodes that belong to different
clusters and would be fully connected within a cluster. In order for non-spanning
trees to be allowed, the following prior term (penalty term), ζ(T ) = log p(T ),
was considered in [10]:

ζ(T ) = log p(T ) =
∑

(i,j)∈E

ζ0
ij + f(#(T )), (6)

where ζ0
ij is a fixed weight of (i, j), f is a concave function, and #(T ) is the

number of edges in T .



Model parameters W and non-spanning trees T in TCA are determined
by alternatively minimizing the objective function J̃ = J (x, W , T ) − ζ(T ) 1.
Minimization of the objective function with respect to the discrete variable T ,
is solved by a greedy algorithm involving the maximum weight forest problem.
The second minimization with respect to W , is done by the gradient descent
method. More details on TCA are found in [10].

3 Proposed Method for Clustering

ICA has been successfully applied to clustering genes from expression data in a
non-mutually exclusive manner [5, 6]. Each independent component is assumed
to be a numerical realization of a biological process relevant to gene expression.
The genes having extremely large or small values of the independent component
can be regarded as significantly up-regulated or down-regulated genes. How-
ever, the assumption that the hidden variables are mutually independent is too
strong to model the real biological processes of gene expression properly. This
limitation of ICA-based method of clustering can be solved by using TCA. The
tree-structured graphical model of TCA is enough rich to model the real biolog-
ical processes. The procedures of TCA-based clustering are summarized below.

Algorithm Outline: TCA-Based Clustering

Step 1 [Preprocessing] The gene expression data matrix X is preprocessed
such that each element is associated with Xit = log2 Rit − log2 Git where
Rit and Git represent the red and green intensity of cDNA microarray, re-
spectively. Genes whose profiles have missing values more than 10% are
discarded. Missing values in X are filled in by applying the KNNimpute,
a method based on k-nearest neighbors [19]. The data matrix is centered
such that each row vector has zero mean. In the case of high-dimensional
data, PCA could be applied to reduce the dimension, but it is not always
necessary.

Step 2 [Decomposition] We apply the TCA algorithm to the preprocessed
data matrix to estimate the demixing matrix W and the encoding variable
matrix S.

Step 3 [Gene clustering] In the case of ICA, the row vectors of S are sta-
tistically independent. Thus clustering is carried out for each row vector
(associated with each linear mode that is the column vector of A). In other
words, for each row vector of S, genes with strong positive and negative
values of associated independent components, are grouped into two clusters,

1 This objective function is the case where whitening constraints are imposed. In such
a case, the minimization is carried out subject to W ΣW

⊤ = I where Σ is the
covariance matrix of x.



each of which is related to induced and repressed genes, respectively. On
the other hand, TCA reveals a dependency structure in the row vectors of
S. Hence, the row vectors of S associated with a spanning tree undergo a
weighted sum. These resulting row vectors (the number of these row vec-
tors is equal to the number of spanning trees in the forest) are used for
grouping genes into up-regulated and down-regulated genes. Denote by Ci

the cluster associated with an isolated spanning tree determined by TCA.
The up-regulated (Cu

i ) and down-regulated (Cd
i ) genes are grouped by the

following rule:

Cu
i =

{
gene j |

∑

k∈Ci

‖ak‖
2
2 sign(ak)Skj ≥ c σ

}
,

Cd
i =

{
gene j |

∑

k∈Ci

‖ak‖
2
2 sign(ak)Skj ≤ −c σ

}
, (7)

where σ denotes the standard deviation of
∑

k∈Ci
‖ak‖

2
2 sign(ak)Sk,:, where

ak is the average of ak and Sk,: is the kth row vector of S. In our experiment,
we chose c = 1.5.

4 Numerical Experiments

4.1 Datasets

We used three publicly available gene expression time series data sets, including
yeast sporulation, metabolic shift, and cell cycle-related data. The details on
these data sets are described in Table 1.

Table 1. The three data sets are summarized. The number of open reading frames
(ORF) represents the total number of genes which are not discarded in the preprocess-
ing step. The number of time points is equal to the dimension of the observation vector
x. We chose the number of clusters of hidden variables by using the TCA algorithm.

No. Dataset # of ORFs # of time points # of clusters Reference

D1 sporulation 6118 7 2 [20]
D2 metabolic 6314 7 3 [21]
D3 cdc28 5574 17 9 [22]

4.2 Performance Evaluation

Evaluating statistical significance of clustering is one of the most important and
difficult steps in clustering gene expression data [1]. For biologists, the contents of



a cluster should be correctly interpreted in order to extract biologically valuable
information from the results of clustering. The correct interpretation is guided
by the analysis of statistical significance of clustering. In statistics, statistical
significance is usually determined in the framework of hypothesis testing con-
sidering the null and alternative hypotheses. To apply the hypothesis testing
framework to this work, we use the Gene Ontology (GO) database annotating
gene products of many well-known genomes in terms of their associated biologi-
cal processes, cellular components, and molecular functions [11]. From the gene
list of a cluster, we obtain several annotation categories in which some genes of
the cluster are contained. If the genes contained in a certain annotation category
are observed within the cluster by chance, the number of genes follows the hy-
pergeometric distribution. This is the null hypothesis H0 and the opposite one is
called the alternative hypothesis H1. Under the null hypothesis H0, the p-value
of the probability to observe the number of genes as large or larger than k from
an annotation category within a cluster of size n is given by

p = 1 −

k−1∑

i=0

(
f

i

) (
g − f

n − i

)

(
g

n

) (8)

where f is the total number of genes within an annotation category of the GO
database and g is the total number of genes within the genome. If the p-value
is smaller than a fixed significance level α, we reject the null hypothesis H0 and
conclude that the genes contained in the annotation category are statistically
significant [1]. To compare the statistical significance of two clustering results,
we collect the minimum p-value smaller than α for each annotation category
observed in both clustering results. A scatter plot of the negative logarithm of the
collected p-values are finally drawn for visual comparison [5]. In the experiments,
we set α = 0.005 for the significance level. We have developed a software called
GOComparator which calculates p values of GO annotations and compares the
two clustering results visually by plotting the minimum p-values shared in both.
It is freely available at http://home.postech.ac.kr/∼blkimjk/software.html.

4.3 Results

We compared the performance of TCA-based clustering with PCA and ICA by
using the three yeast datasets. The method of clustering with the two algorithms
is very similar to TCA except that decomposition is performed by PCA and
ICA, respectively. In addition, the weighted summation of tree-dependent com-
ponents in the gene clustering step is not done as there are no clusters of hidden
variables in the two algorithms. We compared three different ICA algorithms
to choose one showing the best clustering performance in ICA-based cluster-
ing. The used ICA algorithms are Self Adaptive Natural Gradient algorithm
with nonholonomic constraints (SANG), Joint Approximate Diagonalization of
Eigenmatrices (JADE), and Fixed-Point ICA (FPICA) [23]. Among the three



(a) B:TCA, A:PCA (c) B:TCA, A:PCA (e) B:TCA, A:PCA

(b) B:TCA, A:ICA (d) B:TCA, A:ICA (f) B:TCA, A:ICA

Fig. 1. Comparison of TCA based clustering to PCA and ICA on three yeast datasets.
For each dataset, TCA has more points above the diagonal, which indicates that TCA
has more significant GO annotations. (a), (b): D1, (c), (d): D2, (e), (f): D3

ICA algorithms, SANG shows the best performance in terms of statistical signif-
icance of GO annotations for each dataset. We also compared TCA algorithms
with different empirical contrast functions: CUM, KGV, KDE, and STAT. The
TCA algorithm based on Gaussian stationary process (STAT) outperforms the
others for each dataset. The performance of TCA with a non-spanning tree was
better than that of a spanning tree. The comparison results of three datasets
are shown in Fig. 1. It confirms that TCA-based clustering outperforms PCA-
and ICA-based clustering. The number of clusters of tree-dependent components
chosen by TCA is given in Table 1. By applying PCA, we reduced the number
of hidden variables in PCA- and ICA-based clustering to the chosen number of
clusters of TCA-based clustering. Because of the computational cost of TCA, we
reduced the dimension of the data vector to 10 by applying PCA for the dataset

D3. For each dataset, the edge prior,ζ0
ij , in (6) was chosen to 8 log(N)

N
, where N

is the total number of genes.
The clustering based on the linear latent variable models can reveal hidden

biological processes determining gene expression patterns. In the case of TCA-
based clustering, each non-spanning tree corresponds to an unknown biological
process. The characteristics of the unknown biological processes can be revealed
by referring to the most significant GO annotations. The most significant GO
annotations of the dataset D2 selected by TCA are given in Table 2. The dataset



Table 2. The most significant GO annotations of the dataset D2 selected by TCA.
The results of cluster 2 are not shown since it did not contain any significant GO
annotations.

Cluster Induced functions Repressed functions

1 sporulation, spore wall assembly structural molecule activity,
macromolucule biosynthesis

3 aerobic respiration, cellular respiration, ribosome biogenesis and assembly,
carbohydrate metabolism cytoplasm organization and biogenesis

D2 shows the diauxic shift which is a switch from anaerobic growth to aerobic
respiration upon depletion of glucose [21]. The selected significant GO annota-
tions of the cluster 3 represent the unknown biological processing related with
the diauxic shift of yeast.

5 Conclusions

In this paper, we have presented a method of TCA-based clustering for gene
expression data. Empirical comparison to PCA and ICA, with three different
yeast data sets, has shown that the TCA-based clustering is more useful for
grouping genes into biologically relevant clusters and for finding underlying bi-
ological processes. The success of TCA-based clustering has confirmed that a
tree-structured graph (a forest consisting of Chow-Liu trees) for latent variables
is a more realistic and richer model for modelling hidden biological processes.
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