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Abstract

Permutation ambiguity is an inherent limitation in in-
dependent component analysis, which is a bottleneck in
frequency-domain methods of convolutive source separa-
tion. In this paper we present a method for resolving
this permutation ambiguity, where we group vectors of es-
timated frequency responses into clusters in such a way
that each cluster contains frequency responses associated
with the same source. The clustering is carried out, apply-
ing independent component analysis to estimated frequency
responses. In contrast to existing methods, the proposed
method does not require any prior information such as the
geometric configuration of microphone arrays or distances
between sources and microphones. Experimental results
confirm the validity of our method.

1. Introduction

Blind source separation (BSS) is a problem of restor-
ing independent sources from their mixtures, without re-
sorting to any information on sources and mixing char-
acteristics [3, 1]. Two inherent indeterminacies in BSS
or independent component analysis (ICA) are scaling and
permutation ambiguities. In convolutive source separa-
tion, mixtures (corresponding microphone signals in the
domain of speech processing) are assumed to be gener-
ated by convolving sources with a multivariate FIR filter.
Frequency-domain methods of convolutive source separa-
tion, in general, transform time-domain multivariate sig-
nals into frequency-domain using short-time Fourier trans-
form (STFT), so that the problem is converted into a task
of demixing instantaneous mixture at each frequency bin.
However, a bottleneck in frequency-domain BSS methods,
lies in the frequency permutation ambiguity which leads to
different ordering of sources at each frequency bin.

Various methods have been developed, in order to tackle

this permutation ambiguity. Imposing constraints on demix-
ing filters such as smoothing, might be a good solution, but
it can not be used when mixing filter length is too long
[10, 8]. Correlations between envelopes of band-passed
signals are useful, but are not robust since misalignment at
a frequency is propagated through consecutive frequencies
[7]. Direction of arrival (DOA) estimation methods were
used in [4], where the wavelength should be longer than
the half of distance between sensors. This is not adequate
for the case where the sampling rate of observed signals
is high. Processing signals in the time-domain, is free of
frequency permutation ambiguity [2], however, we lose the
benefit of frequency-domain methods (fast processing due
to FFT) [6, 5].

Recently, Sawadaet al. proposed a method based on
clustering basis vectors of estimated mixing filter (corre-
sponding to estimated frequency responses), where only
prior information on the maximal distance between sen-
sors is required and a sophisticated normalization method
was introduced [9]. Motivated by this work, we present
a method of ICA-based clustering where any prior infor-
mation or a normalization procedure is not required. The
basic idea of our method is to exploit basis vectors of rep-
resenting estimated frequency responses, in order to group
them into clusters, each of which contain frequency re-
sponses associated with the same source. We use ICA for
frequency-domain convolutive source separation as well as
for resolving frequency permutation ambiguity, where the
former takes observed signals as input data and the latter
takes estimated frequency responses as input data.

2. Frequency-Domain Convolutive Source Sep-
aration

Convolutive source separation aims at restoring sources
s1(t), . . . , sn(t) from m (m ≥ n) sensor signals,xi, i =



1, . . . , m, that are modelled as

xi(t) =

n∑

j=1

∑

l

hij(l)sj(t− l), i = 1, . . . , m, (1)

wherehij(l) represents the channel impulse response from
sourcej to sensori. We applyL-point short-time Fourier
transform (STFT) to sensor signals, i.e.,

xi(f, τ) =

L/2−1∑

r=−L/2

xi(τ + r)ρ(r)e−2πfr , (2)

wheref ∈ {0, 1
Lfs, ...,

L−1
L fs}, fs represents the sampling

frequency, andρ(r) is a window function (for example,
Hanning window).

A linear convolution can be approximated by a circular
convolution if the frame size of FFT is much larger than
the channel length. The convolutive mixture model in (1) is
approximated by

xi(f, τ) ≈
n∑

j=1

hij(f)sj(f, τ), (3)

wherehij(f) is the frequency response from sourcej to
sensori, andsj(f, τ) is STFT ofsj(t) as in (2). In a com-
pact form, we can write (3) as

x(f, τ) ≈H(f)s(f, τ), (4)

where x(f, τ) = [x1(f, τ), . . . , xm(f, τ)]⊤, s(f, τ) =
[s1(f, τ), . . . , sm(f, τ)]⊤, andH(f) = [hij(f)] ∈ Cm×n.

Frequency-domain source separation consists in esti-
mating a demixing matrixW (f) such thaty(f, τ) =
W (f)x(f, τ) corresponds to scaled and permuted version
of s(f, τ). Any currently available ICA methods [3, 1] can
be applied to estimate the frequency-domain demixing ma-
trix W (f). Estimated mixing matrixA(f) = W−1(f) =
[a1, . . . , an(f)] is associated with the inverse ofW (f). At
different frequency bins,f ∈ {0, 1

Lfs, ...,
L−1

L fs}, differ-
ent permutation happens, due to the inherence indetermi-
nacy in ICA. This causes a serious problem in transforming
frequency-domain signalsy(f, τ) back to time-domain sig-
nalsy(t) in an appropriate way.

3. ICA-Based Permutation Re-Ordering

We start with a quick review of the normalization method
in [9], (since our work was inspired by it), where the fol-
lowing near-field model for channel impulse responses was
used:

hij(f) ≈
q(f)

dij
exp

{
2πfc−1(dij − dRj)

}
, (5)

wherec is the propagation velocity anddij > 0 is the dis-
tance between sourcej and sensori with the subscriptR
representing the reference sensor. Sawadaet al. [9] intro-
duced the following normalization

āik(f)← |aik(f)| exp

{

arg(aik(f)/aRk(f))

4fc−1dmax

}
, (6)

where dmax is the maximum distance between the pre-
selected reference sensorR and a sensori ∈ {1, ..., m},
followed by a unit-norm normalization, for basis vectors
āi(f).

Taking the frequency permutation into account, i.e.,
ai(f) ≈ hk(f) (i andj can be different)and incorporating
the normalization (6) into the near-field model (5), leads to

āij(f) ≈
1

dikD
exp

{

π

2

(dik − dRk)

dmax

}
, (7)

where D =
√∑m

i=1 1/d2
ik. Note that Eq. (7) is free

of frequency-dependent factors and depends only on po-
sitions of sensors and sources. For example, see Fig. 1
where we plot real parts of2-dimensional basis vectors
ai(f), i = 1, 2 (i.e., 2 sources and 2 sensors) with respect
to frequencies, and associated normalized basis vectors.
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Figure 1. Squares and circles represent scat-
ter plots of real parts of 2-dimensional ba-
sis vectors, a1(f) and a2(f) over f ∈
{0, 1

Lfs, ...,
L−1

L fs}. Associated normalized ba-
sis vectors, ā1(f) and ā2(f), form two clus-
ters represented by a horizonal bar and a ver-
tical bar, each of which is the contribution of
each source.

Although the sophisticated normalization (7) eliminates
frequency-dependent factors in basis vectors, which allows
us to easily group basis vectors into clusters, each of which
contains basis vectors associated with the same source.
However, we found out that the performance depends on



what to choose as a reference sensor. Fig. 1 inspires a con-
jecture that thea(f) associated with the same source, lies in
the same direction, regardless of frequency bins. This direc-
tion is referred to as anintrinsic direction. Our method is to
find these intrinsic directions which are expected to corre-
spond to ICA basis vectors when takingai(f) as input data
(see Fig. 2). In contrast to the normalization method, our
approach does not require any prior knowledge on sensor
locations, as well as the sophisticated normalization step.
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Figure 2. Two basis vectors a1(f) and a2(f)
form two intrinsic directions that can be de-
termined by basis vectors computed by ICA
as taking A(f) as input.

Suppose that frequency-domain convolutive source sep-
aration methods already estimatedA(f) = W−1(f),

A(f) = [a1(f), a2(f), ..., an(f)].

We construct a data matrix̃X = [A1, . . . , AL], where
Ak = A

( (k−1)fs

L

)
. Then we apply ICA tõX to find the

following decomposition

X̃ = ÃS̃,

whereÃ ∈ Cm×n andS̃ ∈ Cn×nL denote the ICA basis
matrix and encoding variable matrix associated withX̃, not
the sensor signal. Each column vector ofÃ = [ã1, . . . , ãn]
is normalized to have unit Euclidean norm.

Clustering is done by considering absolute values of en-
coding variables that represent the contribution of basis vec-
tors. For the case ofn = 2, as an example, consider a
data point̃xl. In such a case, we have two basis vectorsã1

andã2 and associated encoding variabless̃l = [s̃1,l, s̃2,l]
⊤.

x̃l is assigned to cluster 1, if|s̃1,l| > |s̃2,l|, and is as-
signed to cluster 2 otherwise. Forn = 2, in fact, we have
to consider two consecutive data points,x̃l andx̃l+1, that
are associated with two column vectors ofAl. If x̃l is as-
signed to cluster 1, theñxl+1 should be assigned to cluster

2, since both vectors should not belong to the same clus-
ter. However, there might be a case where|s̃1,l| > |s̃2,l|
and |s̃1,l+1| > |s̃2,l+1|. In such a case, we take the ra-
tio of encoding variables into account and assignx̃l and
x̃l+1 to cluster 1 and 2, respectively, if|s̃1,l|/|s̃2,l| >
|s̃1,l+1|/|s̃2,l+1|. This idea can be easily generalized to the
case ofn > 2.

Our ICA-based clustering method has some advantages
over the Sawada’s method [9], in two aspects:

• Our method does not require prior information such as
distances between sensors.

• Our method does not require the sophisticated normal-
ization (7), the performance of which depends on the
selection of a reference sensor.

4. Numerical Experiments

We present three simulation results, with comparison to
the normalization method in [9]. Two numerical examples
are to emphasize the clustering performance of our ICA-
based method, compared to the normalization method.

4.1. Clustering Performance

We measured impulse responses using two speakers and
two microphones with three different geometric configura-
tions shown in Fig. 3:

• Case 1: The geometric configuration of microphones
and speakers, is shown in Fig 3 (a), where the distance
between speakers is 1m and each microphone is sepa-
rated by 0.5m from its associated speaker.

• Case 2: The distance between speakers as well as the
distance between microphones, are reduced to 0.5m.
(see Fig. 3 (b))

• Case 3: Both microphones separated by 0.25m, are
close to speaker 1. (see Fig. 3 (c))

We transform these measure impulse responses into fre-
quency responses, then artificially make permutation to
generatea1(f) anda2(f) (L = 512 andn = 2). ICA-
based clustering results (where we applied the natural gra-
dient ICA algorithm with a complex nonlinear function),
in terms of accuracy (clustering error rate based on known
class labels), are summarized in Table 1. For the case where
each microphone is close to a corresponding speaker, basis
vectorsa1(f) and a2(f) are well clustered, since intrin-
sic directions are well separated. However, if both micro-
phones are close to a single speaker, then clustering per-
formance becomes worse in our method as well as the nor-
malization method. The performance of the normalization
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Figure 3. Three different geometric configurations of speak ers and microphones, are shown in (a),
(b), (c), corresponding to case 1, case 2, case 3, respective ly.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

−5 −4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

−5 −4 −3 −2 −1 0 1 2 3 4 5

−4

−3

−2

−1

0

1

2

3

4

(a) (b) (c)

Figure 4. Results of re-ordering artificially permuted freq uency responses, are shown: (a) before
re-ordering; (b) re-ordering using the normalization meth od [9]; (c) re-ordering using our method.
Circle points are associated with the first column vectors an d cross points are associated with the
second ones. Circle and cross points are appropriately line d up in (b) and (c), which implies that the
permutation problem is resolved.

method is slightly different, depending on the selection ofa
reference sensor. Fig 4 shows scatter plots of basis vectors
for case 1.

Table 1. Comparison of our ICA-based clus-
tering to the normalization method [9], in
terms of accuracy. Norm-1 and Norm-2 repre-
sent the normalization method, with sensor 1
or 2 being a reference sensor, respectively.

ICA Norm-1 Norm-2
Case 1 0.20 0.59 0.59
Case 2 3.71 4.88 5.08
Case 3 27.34 31.05 29.10

4.2. Separation Results

In order to show the validity of our method, we applied
our ICA-based clustering to the task of resolving permu-
tation ambiguity in a frequency-domain source separation
method. We used the natural gradient ICA algorithm with
a complex nonlinear function (for example, [10]) for both
frequency-domain convolutive source separation and ICA-
based clustering. We recorded two microphone signals us-
ing a male voice and a female voice, with the configuration
in Fig. 3 (a). The sampling rate was 16kHz and 1024-
point FFT was used. The performance in terms of signal-
to-interference ratio (SIR) improvement, was investigated
using the method in [8], with comparison to the normaliza-
tion method (see Table 2).

4.3. Clustering for n = 3

Fig.5 shows scatter plots of basis vectorsai(f), i =
1, 2, 3, for the case of three sources and three sensors. Our
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Figure 5. Re-ordering results using our method for the case o f n = 3, is shown: (a) before re-ordering;
(b) after re-ordering using our ICA-based clstering method .

Table 2. SIR improvements (dB).
Input SIR ICA Norm-1 Norm-2

6.6163 8.2823 7.7444 8.1493

method can be applied to the case ofn > 2, although the
computational complexity slightly increases.

5. Conclusions

We have presented a method of resolving frequency per-
mutation ambiguity in frequency-domain source separation
methods. The key idea was to exploit geometric information
of basis vectors associated with independent components
of frequency responses estimated at frequency bins. These
basis vectors of representing frequency responses, led us
to group them into clusters containing frequency responses
associated with the same source. Experimental compari-
son have shown that the ICA-based clustering method was
superior to the sophisticated normalization method [9] in
resolving frequency permutation. Moreover, in contrast to
[9], our method did not require any prior knowledge on dis-
tances between sensors.
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