
Rao-Blackwellized Particle Filtering for
Sequential Speech Enhancement

Sunho Park and Seungjin Choi

Abstract— In this paper we present a method of sequential
speech enhancement, where we infer clean speech signal using
a Rao-Blackwellized particle filter (RBPF), given a noise-
contaminated observed signal. In contrast to Kalman filtering-
based methods, we consider a non-Gaussian speech generative
model that is based on the generalized auto-regressive (GAR)
model. Model parameters are learned by sequential expectation
maximization, incorporating the RBPF. Empirical comparison
to Kalman filter, confirms the high performance of the proposed
method.

I. I NTRODUCTION

Speech enhancement is a fundamental problem, which
aims at estimating clean speech, given noise-contaminated
signals. Various speech enhancement methods have been
developed. The spectral subtraction method [8] is a widely-
used speech enhancement method, but suffers from audi-
ble distortion called ”musical noise”. TheH∞ filter-based
method involves the infinite-norm minimization, where the
prior knowledge of noise distribution is not required. Thus,
it works in a robust manner for arbitrary noise [11], how-
ever, it does not operate sequentially. The Kalman filter
is widely used for speech enhancement [10], since it can
be easily implemented and gives the optimal solution in
the mean-squared sense. However, Kalman filter assumes
a Gaussian distribution, hence it has a limitation for mod-
elling speech which follows a non-Gaussian distribution. Re-
cently particle filters were applied to the problem of speech
enhancement [13], where the time-varying auto-regressive
model (Gaussian model) for the clean speech was used
and associated parameters were sequentially updated by an
approximated Bayesian method.

In this paper, we consider the generalized auto-regressive
(GAR) model for clean speech, in order to accommodate
the non-Gaussian characteristics of speech. With the GAR
model, we formulate the speech enhancement problem as
a Rao-Blackwellized particle filtering. Associated model
parameters are learned by a sequential expectation maximiza-
tion (SEM) method. Empirical comparison to the Kalman
filter, confirms that the proposed method based on the Rao-
Blackwellized particle fitler, is superior to Kalman filter,in
the task of sequential speech enhancement.

II. GENERALIZED AUTO-REGRESSIVEMODEL

The auto-regressive (AR) model is a widely-used linear
modelling method, where the current value of a time series,
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st, is expressed as a linear sum of its past values,{st−d},
and an innovationvt:

st =

p∑

d=1

αdst−d + vt. (1)

The AR modelling involves determining coefficients{αd}
that provide a linear optimal fitting to given time series{st},
assuming that the innovationvt is Gaussian. The AR model
captures the dependence of the current value of a time series
on its past values, through a linear model. The innovation
contains a truly new information that is not found in past
values of time series.

The generalized auto-regressive (GAR) model is a non-
Gaussian extension of the AR model, which adopts the same
linear model (1) but assumes the innovationvt is drawn
from the generalized exponential (GE) distribution (a.k.a.
generalized Gaussian) with mean zero [2] that is of the form

p(v;R, β) =
Rβ1/R

2Γ(1/R)
exp

{
−β |v|R

}
, (2)

where 1/β determine width of the density andR is a
parameter which determines a shape of distribution.

The GE distribution accommodates a wide class of uni-
modal probability distribution. For example,p(v;R, β) be-
comes Gaussian distribution forR = 2 and Laplacian
distribution for R = 1. The GAR model reflects the non-
Gaussian characteristics of speech signals. However, in such
a model, the probabilistic inference is intractable, in contrast
to Kalman filters. This leads us to consider particle filters
which are described in section IV.

III. STATE-SPACE MODELS

The noise-contaminated observed signalyt is modelled as
a linear sum of clean speechst and noisent:

yt = st + nt, (3)

where the clean speech and noise follow GAR and AR
models, respectively, i.e.,

st =

p∑

d=1

αdst−d + vt, (4)

nt =

q∑

d=1

γdnt−d + ut, (5)

wherevt obeys the generalized exponential distribution and
ut is drawn from Gaussian distribution. We assume thatst

andnt are statistically independent.



We definest ∈ R
p andnt ∈ R

q as

st = [st, st−1, . . . , st−p+1]
⊤,

nt = [nt, nt−1, . . . , nt−q+1]
⊤.

Concatenating these two vectors, we define a state vector
xt = [s⊤

t , n⊤
t ]⊤ ∈ R

p+q. Accommodating generative
models (4) and (5) for speech and noise, the state-space
model that we consider, is of the form:

xt = Axt−1 + Brt, (6)

yt = b⊤xt, (7)

where

A =

[
As 0
0 An

]
,

B =

[
bs 0
0 bn

]
,

rt = [vt, ut]
⊤,

b⊤ = [b⊤
s , b⊤

n ],

and

bs = [1, 0, . . . , 0]⊤ ∈ R
p,

bn = [1, 0, . . . , 0]⊤ ∈ R
q.

The state transition matrixA ∈ R
(p+q)×(p+q) is a block

diagonal matrix whereAs is given by

As =




α1 α2 · · · · · · αp

1 0 · · · · · · 0

0 1
. . .

...
...

. . .
. . .

...
0 · · · 0 1 0




,

andAn is constructed in a similar way.

IV. SEQUENTIAL MONTE CARLO METHOD

A. Generic Particle Filter

Particle filter uses a set of particles to solve nonlinear
and non-Gaussian probabilistic inference problems, approx-
imating the true posterior distribution of a hidden state bya
discrete distribution determined by the evaluation of impor-
tance weight at each particle. Estimating posterior density
sequentially requires two-step procedure. First, we generate
new particles from a proposal densityπ(xt|x0:t−1, y1:t),

x
(i)
t ∼ π(xt|x

(i)
0:t−1, y1:t), (8)

wherex
(i)
0:t , {x

(i)
0 ,x

(i)
1 , . . . ,x

(i)
t } andy1:t = {y1, . . . , yt}.

Second, we update the weightw
(i)
t of each particle:

w
(i)
t ∝ w

(i)
t−1

p(yt|x
(i)
t )p(x

(i)
t |x

(i)
t−1)

π(x
(i)
t |x

(i)
0:t−1, y1:t)

. (9)

These sequential sampling (the generation of new particles)
and weight-updating are the main part of particle filter.

In our inference problem, the likelihoodp(yt|xt) is not
well defined. Moreover, the posterior density of the noise

has to be approximated in the framework of the generic
particle filter, although it can be exactly calculated due to
the Gaussian assumption. In order to overcome these two
limitations, we re-formulate the inference problem using a
Rao-Blackwellised particle fitler (RBPF).

B. Rao-Blackwellised Particle Filter

The posterior density of the hidden state can be decom-
posed as

p(x0:t|y1:t) = p(n0:t|s0:t, y1:t)p(s0:t|y1:t), (10)

which leads us to estimate the speech and noise separately.
Taking the GE generative model (4) into account, the distri-
bution p(s0:t|y1:t) does not admit a closed-form expression.
On the other hand, the Gaussian generative model (5) enables
us to determinep(n0:t|s0:t, y1:t) in a tractable manner, which
admits a closed-form expression.

The decomposition (10) leads us to develop more efficient
inference algorithm, compared to the generic particle filter.
The posterior density of the noise,p(n0:t|s0:t, y1:t), can be
analytically computed using the Kalman filter, if we know
the marginal posterior densityp(s0:t|y1:t). Only the posterior
density of speech,p(s0:t|y1:t), is approximately calculated
through a sampling method. This method, motivated by the
decomposition (10), is known as RBPF.

The estimation of hidden states associated with speech
and noise using a RBPF, is as follows. First, the marginal
posterior density of speech is approximated by importance
weights of particles [4],

p̂(s0:t|y1:t) =

N∑

i=1

w̃
(i)
t δs(i)

0:t
(s0:t),

where,{w̃(i)
t }1,...,N is normalized importance weights andN

is the number of the particles. Next, the marginal posterior
density of noise [3] is given by

p̂(n0:t|y1:t) =

N∑

i=1

w̃
(i)
t p(n0:t|s0:t, y1:t). (11)

The marginal posterior density of noise (11) is a mixture
of Gaussians where mixing parameters correspond to the
importance weights of particles. Thus, we attach Kalman
filter to each particle in the RBPF for the inference of noise.
Next section illustrates the details on the inference.

V. I NFERENCE

A. Inference for the state of noise

Let s
(i)
t (i = 1, 2, · · · , N ) be particles of clean speech and

σ2 be the variance ofut in the noise AR model. We sample
s
(i)
t by the method described in Sec. V-B and then propagate

the meanµ(i)
t and covarianceΣ(i)

t of nt with a Kalman filter



as follows:

µ
(i)
t|t−1 = Anµ

(i)
t−1|t−1,

Σ
(i)
t|t−1 = AnΣ

(i)
t−1|t−1A

⊤
n + σ2bnb⊤n ,

Γ
(i)
t = b⊤n Σ

(i)
t|t−1bn,

y
(i)
t|t−1 = b⊤n µ

(i)
t|t−1 + b⊤

s s
(i)
t ,

µ
(i)
t|t = µ

(i)
t|t−1 − Σ

(i)
t|t−1bn

[
Γ

(i)
t

]−1
(yt − y

(i)
t|t−1),

Σ
(i)
t|t = Σ

(i)
t|t−1 − Σ

(i)
t|t−1bn

[
Γ

(i)
t

]−1
b⊤n Σ

(i)
t|t−1,

where

µt|t−1 , E{nt|y1:t−1},

µt|t , E{nt|y1:t},

yt|t−1 , E{yt|y1:t−1},

Σt|t−1 , cov(nt|y1:t−1),

Σt|t , cov(nt|y1:t),

Γt , cov(yt|y1:t−1).

The predictive density [3] is given by

p(yt|y1:t−1, s0:t) = N (yt; yt|t−1,Γt). (12)

Finally the marginal filtering density of noise is estimatedby
a minimum mean square estimation (MMSE) method [7],

p̂(nt|y0:t) = N (µ̂t|t, Σ̂t|t), (13)

where

µ̂t|t =

N∑

i=1

w̃
(i)
t µ

(i)
t|t ,

Σ̂t|t =

N∑

i=1

w̃
(i)
t {Σ

(i)
t|t + (µ

(i)
t|t − µ̂t|t)(µ

(i)
t|t − µ̂t|t)

⊤}.

B. Inference for the state of clean speech

In the RBPF, updating importance weights in (9) (that is
slightly different from the one in [3]) is done by

w
(i)
t ∝ w

(i)
t−1

p(yt|s
(i)
0:t, y1:t−1)p(s

(i)
t |s

(i)
t−1)

π(s
(i)
t |s

(i)
0:t−1, y1:t)

, (14)

wherep(yt|s0:t, yt−1) is the predictive density given in (12),
p(st|st−1) is the prior distribution determined by the GAR
model for clean speech, andπ(st|s0:t−1, y1:t) is the proposal
density. Depending on the choice of the proposal density,
the updating rule for importance weights is different. We
consider the following two proposal densities:

1) Prior Importance Distribution: If we use the prior
distribution for the proposal density, i.e.,π(st|s0:t−1, y1:t) =
p(st|st−1), then importance weights are simplified as

w
(i)
t ∝ w

(i)
t−1p(yt|s

(i)
0:t, y1:t−1). (15)

The distributionp(yt|s
(i)
0:t, y1:t−1) in (15) is easily evaluated

through one-step time-update in the Kalman filter on each
particle. However, in such a case, we should generate new
particles from GE density, which is a time-consuming task
[14].

2) Optimal Importance Distribution: The better choice for
the proposal density is the optimal importance distribution
that minimizes the variance of the importance weights [4].
Using Bayes rule, the optimal importance distribution is
expressed by

p(st|s0:t−1, y1:t) =
p(yt|s0:t, y1:t−1)p(st|st−1)

p(yt|s0:t−1, y1:t−1)
, (16)

wherep(yt|s0:t−1, y1:t−1) is the normalizing constant given
by

p(yt|s0:t−1, y1:t−1)

=
∫

p(yt|s0:t, y1:t−1)p(st|st−1)dst.

Note that the variablest is the only stochastic component,
in st = [st, . . . , st−p+1]

⊤. Thus, Eq. (16) is simplified as

p(st|st−1, y1:t) ∝ p(yt|s0:t, y1:t−1)p(st|st−1). (17)

The distributionp(st|st−1) in (17) follows the GE density,
hence the sampling might be a time-consuming job. Here we
consider the Gaussian-approximation of the GE density, i.e.,

p̂(st|s
(i)
t−1) = N (st; ŝ

(i)
t|t−1, σ

2
s), (18)

ŝ
(i)
t|t−1 = α⊤s

(i)
t−1,

σ2
s =

c

2β
,

whereŝt|t−1 is the prediction determined by the GAR model.
The positive constantc is a value determined by a user such
that the shape of Gaussian is similar to that of GE density.
In our experiment, we setc = 0.85 for R = 1.25.

Using the Gaussian-approximated optimal distribution, we
generate new samples by

s
(i)
t ∼ p̂(st|st−1)p(yt|s0:t, y1:t−1),

= N (µ0,Σ0), (19)

where

µ0 = ŝ
(i)
t|t−1 − Kt(yt − y

(i)
t|t−1),

Σ0 = σ2
s − Ktσ

2
s ,

Kt = σ2
s(σ2

s + Γt)
−1.

Thus, it follows from (16) and (19), the updating rule for
importance weights in (14), is simplified as

w
(i)
t ∝ w

(i)
t−1

p(s
(i)
t |s

(i)
t−1)

p̂(s
(i)
t |s

(i)
t−1)

p̂(yt|s
(i)
0:t−1, y1:t−1), (20)

where

p̂(yt|s0:t−1, y1:t−1)

=
∫

p(yt|s0:t, y1:t−1)p̂(st|st−1)dst.

The ratio of distributions,
p(s

(i)
t

|s(i)
t−1)

bp(s
(i)
t

|s(i)
t−1)

in (20), involves the

difference between GE density and its associated Gaussian
approximation. It can be viewed as a compensation term



which makes up for the Gaussian approximation-based sam-
pling (19). After updating the importance weights, we nor-
malize them to sum to one,

w̃
(i)
t =

w
(i)
t∑N

i=1 w
(i)
t

.

In addition, the resampling scheme is also applied in order
to avoid a degeneracy problem, so that only particles with
high weights survive. In this way, we obtain a set of particles
which approximatesp(s0:t|y1:t).

VI. PARAMETER LEARNING

So far, parameters involving the speech model as well as
the noise model, are assumed to be known in the inference.
However, these parameters are not available in advance.
Parameters to be learned, areθ = {α, β,γ, σ2}, whereα =
[α1, . . . , αp]

⊤ is the set of speech GAR model coefficients
in (4), β is the parameter determining the width of the
generalized exponential density in (2),γ = [γ1, . . . , γq]

⊤

is the set of noise AR model coefficients in (5), andσ2
n

is the variance ofet in the noise AR model (5). In this
section, we present a sequential Newton expectation max-
imization (SNEM) algorithm which learns model parameters
recursively using the approximated posterior distribution of
hidden variables determined by the RBPF.

A. Sequential EM

The EM algorithm is an iterative method which finds local
maxima of the log-likelihood function. E-step involves calcu-
lating the expected complete-data log-likelihood and M-step
updates parameters that maximize the expected complete-
data log-likelihood. In our model (6), the observationyt is
related to the hidden statext by a deterministic mapping.
Thus, the parameterized log-distribution of hidden statescan
be treated as the complete-data log-likelihood. The quick
summary of EM algorithm is as follows:

E-step

Q(θ, θ̂k) = E{log p(x0:T ; θ)|y1:T , θ̂k}, (21)

where T is a total number of observations and
p(x; θ) represents the probability density ofx pa-
rameterized byθ.

M-step

θk+1 = arg max
θ

Q(θ, θ̂k).

The EM algorithm described above is a batch algorithm
which cannot be directly applied to our learning problem. In
order to develop a sequential EM algorithm, we first consider

p(x0:T ; θ) given by

log p(x0:T ; θ)

= C +
T

R
log β −

T

2
log σ2 − β

T∑

t=1

|st − α⊤st−1|
R

−
1

2σ2

T∑

t=1

(nt − γ⊤nt−1)
2,

= C +
T∑

t=1

log p(xt; θ),

whereC is a constant which is independent of parameters
and log p(xt; θt) is a single factor of the complete-data log-
likelihood at timet, given by

log p(xt; θ)

,
1

R
log β −

1

2
log σ2 − β|st − α⊤st−1|

R

−
1

2σ2
(nt − γ⊤nt−1)

2.

In order to accommodate the sequential learning, we
modify the E-step in such a way that the expected complete-
data log-likelihood is evaluated through the expectation given
observations up tot (instead of the whole observations). In
other words, the sequential EM updating has the form

E-step

Q(θt+1, θ̂t)

= Lt+1(θt+1)

=

t+1∑

τ=1

λt+1−τ
E{log p(xτ ; θτ )|y1:τ , θ̂τ−1}

= λLt(θt) + E{log p(xt+1; θt+1)|y1:t+1, θ̂t},

whereλ is the forgetting factor0 ≤ λ ≤ 1.
M-step

θ̂t+1 = arg max
θt+1

Q(θt+1, θ̂t).

The E-step involves computing

E{log p(xt; θt)|y1:t, θ̂t−1},

which can be carried out using the particle filter,

E{log p(xt; θt)|y1:t, θ̂t−1} =
N∑

i=1

w̃
(i)
t log p(x

(i)
t ). (22)

The 2nd-order Taylor approximation ofQ(θt+1, θ̂t), leads to
the M-step [5], [12] that has the form

θ̂t+1 = θ̂t + Ĥ
−1

t+1ϕ(θ̂t), (23)

Ĥt+1 = λĤt + H(θ̂t), (24)

where

ϕ(θt) = E{∇θt
log p(xt; θt)|y1:t, θ̂t−1},

H(θt) = −E{∇2
θt

log p(xt; θt)|y1:t, θ̂t−1}.



These updating rules (23) and (24) are referred to assequen-
tial Newton-Raphson EM (SNEM).

We also consider a simpler updating rule that is of the
form

θ̂t+1 = θ̂t + λ0H(θ̂t)
−1ϕ(θ̂t), (25)

whereλ0 is a sufficiently-small positive constant. The updat-
ing rule (25) use only current HessianH(θ̂t). In such a case,
we employ the quasi-Newton method where the inverse of the
Hessian is approximated. This simpler algorithm is referred
to assequential quasi-Newton EM (SQEM).

B. Sequential Updating Rules

It follows from (22) and (22) that we have

E{log p(xt; θt)|y1:t, θ̂t−1}

= E{log p(st;αt, βt)|y1:t, θ̂t−1}

+ E{log p(nt;γt, σ
2
t )|y1:t, θ̂t−1}, (26)

which implies that updating parameters for speech and noise
can be done separately. In addition, the decomposition (26)
allows us to evaluate the statistical expectation using RBPF.
The first term in Eq. (26) is approximated by

E{log p(st;αt, βt)|y1:t, θ̂t−1} ≈
N∑

i=1

w̃
(i)
t log p(s

(i)
t ;αt, βt),

where s
(i)
t is particles of the RBPF. The second term in

Eq. (26) can be easily calculated, because the expectation is
carried out with respect to Gaussian distribution given in Eq.
(13). Therefore, the sequential parameter updating is carried
out in the framework of RBPF.

Updating rules for parameters{αt, βt} in the speech
model, are given by

α̂t+1 = α̂t + Ĥ
−1(s)

t+1 ϕ(s)(θ̂t), (27)

β̂t+1 =
1 − λs

1 − λt+1
s

{ǫ(t + 1)}, (28)

Ĥ
(s)

t+1 = λĤ
(s)

t + H(s)(θ̂t),

where

ϕ(s)(θ̂t) = E{∇α log p(st+1;α)|α= bαt
|y1:t+1, θ̂t}

= β̂tR
N∑

i=1

w̃
(i)
t+1sign(e(i)

t+1)|e
(i)
t+1|

R−1s
(i)
t ,

H(s)(θ̂t) = −E{∇2
α log p(st+1;α)|α= bαt

|y1:t+1, θ̂t}

= β̂tR(R − 1)

N∑

i=1

w̃
(i)
t+1|e

(i)
t+1|

R−2s
(i)
t (s

(i)
t )⊤,

ǫ(t + 1) ,

t+1∑

τ=1

λt−τ+1
s RE{|eτ |

R|y1:τ , θ̂τ−1},

= λsǫ(t) + RE{|et+1|
R|y1:t+1, θ̂t},

et+1 = st+1 − α̂
⊤
t st, e

(i)
t+1 = s

(i)
t+1 − α̂

⊤
t s

(i)
t ,

whereet is a prediction error in the speech GAR model and
e
(i)
t is a prediction error of each particle and0 ≤ λs ≤

1 is the forgetting factor forβ. Note thatβ is restricted
to be a positive value. Thus, the sequential EM can not be
directly applied. Instead, we use a gradient method, following
a suggestion in [6].

Updating rules for parameters in the noise model are
simple, since they involve Gaussian distribution. Let us
define the matrixV t as

V t , E{ññ
⊤|y1:t, θ̂t−1)},

=

[
V 11

t V 12
t

V 21
t V 22

t

]
,

where ñt = [nt nt−1]
⊤, V 11

t is a scalar,V 22
t is a q × q

matrix, andV 12
t = (V 21

t )⊤is a q-dimensional vector [6].
With these definitions, updating rules are given by

γ̂t+1 = γ̂t + Ĥ
−1(n)

t+1 ϕ(n)(θ̂t), (29)

σ̂2
t+1 =

1 − λn

1 − λt+1
n

t+1∑

τ=1

λt−τ+1
n {V 11

τ − γ̂
⊤
τ−1V

12
τ },(30)

Ĥ
(n)

t+1 = λĤ
(n)

t + H(n)(θ̂t),

where

ϕ(n)(θ̂t) = E{∇γ log p(nt+1;γ)|γ=bγ
t

|y1:t+1, θ̂t}

=
1

σ̂2
t

{V 12
t+1 − V 22

t+1γ̂t},

H(n)(θ̂t) = −E{∇2
γ log p(nt+1;γ)|γ=bγ

t

|y1:t+1, θ̂t}

=
1

σ̂2
t

{V 22
t+1},

and0 ≤ λn ≤ 1 is the forgetting factor forσ2.
As mentioned in Sec. VI-A, we also apply the sequen-

tial Quasi-Newton method. Our two proposed algorithms
are referred to as: (1) RBPF+SNEM (Rao-Blackwellized
particle filtering+ sequential Newton-Raphson EM); (2)
RBPF+SQEM (Rao-Blackwellized particle filtering+ sequen-
tial quasi-Newton EM). The outline of our sequential speech
enhancement method is summarized in Table I.

TABLE I

ALGORITHM OUTLINE: OUR SEQUENTIAL SPEECH ENHANCEMENT.

Generation step: Generate particles according to (19) and update
µ

(i)
t|t−1

andΣ
(i)
t|t−1

for each Kalman filter.
Weight updating step: Update importance weights by (20) and
normalize them to sum to one.

Resampling step: Resample particles,{µ(i)
t|t−1

,Σ
(i)
t|t−1

, y
(i)
t|t−1

}, ac-
cording to importance weights, using the method in [9].
MCMC diversity step : Apply Markov Chain Monte Carlo (MCMC)
to the invariant distributionp(s0:t|y1:t), leading some particles to
move a more probable region within preserving the invariant distrib-
ution [1].

Kalman update step: Update{µ(i)
t|t

,Σ
(i)
t|t

} through Kalman using the
update rule for Kalman filter in section (V-A).
Parameter estimation step: Update parameters of both speech and
noise model using sequential Newton or Quasi-Newton EM algorithm
in section VI



VII. E XPERIMENTAL RESULTS

For experiments, we used a speech signal that is publicly
available 1. The speech signal was resampled at 8 kHz
and first 5000 data points (T = 5000) were used in our
experiments.

The order of the speech GAR model was set asp = 12
and the order of the noise AR model was set asq = 5. The
value ofR in the generalized exponential density was set as
R = 1.25. The number of particles wereN = 200.

As a performance measure, we evaluate output signal-
noise-ratio (SNR), with respect to various input SNR. The
output SNR is defined by

SNRout = 10 log10

∑T
t=1 s2

t∑T
t=1[st − ŝt]2

,

ŝt =

N∑

i=1

w̃
(i)
t b⊤s s

(i)
t ,

wherest is a clean speech signal andŝt is its estimate. In the
calculation of the input SNR,̂st is replaced byyt in Eq. (31).
The output SNR was evaluated by averaging 30 independent
runs for each input SNR.

We compare our method to a Kalman filter-based sequen-
tial speech enhancement method. Kalman-gradient-descent-
sequential (KGDS) algorithm [6], employs Gaussian density
for speech model and updates parameters sequentially using
a gradient method. For the case of high input SNR, KGDS
is sometimes unstable [6]. Thus, we consider the SNEM in
the framework of Kalman filter, leading to KF+SNEM where
inference and parameter learning is carried out using Kalman
filter. Experimental results are shown in Fig. 1, where output
SNRs for 4 different algorithms are plotted, with respect to
various input SNRs (varying from 0 dB to 10 dB).
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Fig. 1. Performance of sequential speech enhancement methods are shown
in terms of output SNR with respect to input SNR.

Fig. 1 shows that our methods (RBPF+SNEM and
RBPF+SQEM) outperform Kalman filter-based methods
(KGDS and KF+SNEM). In case of high input SNR (input

1http://www.ece.mcmaster.ca/ reilly/html/projects/dereverb/speechRHINTE.wav

SNR≥ 5dB), the observed signal is closer to actual speech
signal, implying that it is far from Gaussian assumption.
In such a case, we observe that our methods are much
more appropriate, compared to Kalman filter-based meth-
ods. RBPF+SQEM is quite comparable to RBPF+SNEM,
although the former takes a simpler updating rule than the
latter.

VIII. C ONCLUSIONS

We have presented new sequential speech enhancement al-
gorithm which employ the GAR speech model in order to ac-
commodate the non-Gaussian characteristics of speech. Two
new algorithms, including RBPF+SNEM and RBPF+SQEM,
employ Rao-Blackwellized particle filter for inference and
update model parameters using the sequential EM method.
Experimental results confirmed the high performance of
our proposed methods, compared to Kalman filter-based
methods.
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