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Abstract— In this paper we present a method of sequential s;, is expressed as a linear sum of its past vales, 4},
speech enhancement, where we infer clean speech signal usingand an innovation:
a Rao-Blackwellized particle filter (RBPF), given a noise-
contaminated observed signal. In contrast to Kalman filtering- p
based methods, we consider a non-Gaussian speech generative St = Z QqSt—d + Vt. 1)
model that is based on the generalized auto-regressive (GAR) d=1
model. Model parameters are learned by sequential expectation . . . .
maximization, incorporating the RBPF. Empirical comparison ~ 1he AR modelling involves determining coefficienfs, }
to Kalman filter, confirms the high performance of the proposed that provide a linear optimal fitting to given time serigs},
method. assuming that the innovatian is Gaussian. The AR model
captures the dependence of the current value of a time series
on its past values, through a linear model. The innovation
Speech enhancement is a fundamental problem, whig@ntains a truly new information that is not found in past
aims at estimating clean speech, given noise-contaminatégjues of time series.
signals. Various speech enhancement methods have beeithe generalized auto-regressive (GAR) model is a non-
developed. The spectral subtraction method [8] is a widelyGaussian extension of the AR model, which adopts the same
used speech enhancement method, but suffers from auliftear model (1) but assumes the innovationis drawn
ble distortion called "musical noise”. Th& ., filter-based from the generalized exponential (GE) distribution (a.k.a
method involves the infinite-norm minimization, where thegeneralized Gaussian) with mean zero [2] that is of the form
prior knowledge of noise distribution is not required. Thus RAV/R
it works in a robust manner for arbitrary noise [11], how- p(v; R, ) = ———— exp {_g \U\R}, 2)
ever, it does not operate sequentially. The Kalman filter 2(1/R)
is widely used for speech enhancement [10], since it caphere 1/3 determine width of the density an®& is a
be easily implemented and gives the optimal solution iRarameter which determines a shape of distribution.
the mean-squared sense. However, Kalman filter assumeshe GE distribution accommodates a wide class of uni-

a Gaussian distribution, hence it has a limitation for modmodal probability distribution. For example(v; R, 3) be-
elling speech which follows a non-Gaussian distributioe: R comes Gaussian distribution faR = 2 and Laplacian

cently particle filters were applied to the problem of speec§jstribution for R = 1. The GAR model reflects the non-
enhancement [13], where the time-varying auto-regressi\€aussian characteristics of speech signals. Howevergcin su

model (Gaussian model) for the clean speech was usgdnodel, the probabilistic inference is intractable, intcast
and associated parameters were sequentially updated bytg@nkaiman filters. This leads us to consider particle filters

I. INTRODUCTION

approximated Bayesian method. _ which are described in section IV.
In this paper, we consider the generalized auto-regressive
(GAR) model for clean speech, in order to accommodate I1l. STATE-SPACE MODELS

the non-Gaussian characteristics of speech. With the GAR
model, we formulate the speech enhancement problem
a Rao-Blackwellized particle filtering. Associated mode
parameters are learned by a sequential expectation maximiz Ui = S + Ny, ()
tion (SEM) method. Empirical comparison to the Kalman

filter, confirms that the proposed method based on the Raghere the clean speech and noise follow GAR and AR
Blackwellized particle fitler, is superior to Kalman filten ~ models, respectively, i.e.,

the task of sequential speech enhancement.

The noise-contaminated observed signals modelled as
ﬁ‘?inear sum of clean speeah and noisen;:

P
s¢ = agSi—q +v 4
Il. GENERALIZED AUTO-REGRESSIVEMODEL ! ; T “)
The auto-regressive (AR) model is a widely-used linear l
modelling method, where the current value of a time series, M= ant—d U ()
d=1
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We defines; € R? andn; € R? as has to be approximated in the framework of the generic
particle filter, although it can be exactly calculated due to

_ T
st = [s6,80-15- - st—p] T’ the Gaussian assumption. In order to overcome these two
Ny = [N, N1y M gp1] - limitations, we re-formulate the inference problem using a
Concatenating these two vectors, we define a state vecfdpo-Blackwellised particle fitler (RBPF).
x, = [s/,n/]T € Rt Accommodating generative

models (4) and (5) for speech and noise, the state-spdge Rao-Blackwellised Particle Filter

model that we consider, is of the form: The posterior density of the hidden state can be decom-

r, = Ax, 1+ Bry, (6) posed as
y = blay, (7
P(x0:t|y1:¢) = P(N0:t]S0:, Y1:6)P(S0:¢|Y1:1), (10)
where
A, 0 which leads us to estimate the speech and noise separately.
A = [ 0 A, } Taking the GE generative model (4) into account, the distri-
b. 0 bution p(s¢.+|y1.:) does not admit a closed-form expression.
B = { 0‘5 b } On the other hand, the Gaussian generative model (5) enables
T” us to determing(no.|so.¢, y1.¢) in @ tractable manner, which
e o= (v, admits a closed-form expression.
b' = [b).,b,], The decomposition (10) leads us to develop more efficient
inference algorithm, compared to the generic particlerfilte
and . ) .
The posterior density of the noisg(r..|so.+,y1.+), can be
b, = [1,0,...,0]" € RP, analytically computed using the Kalman filter, if we know
b, = [L,0,... ,O]T c RY. the marginal posterior densipyf so.+|y1.¢). Only the posterior

- _ _ density of speechp(so.:|y1.¢), is approximately calculated
The state transition matrid € R(PT0)*(#+9) is a block through a sampling method. This method, motivated by the

diagonal matrix whered is given by decomposition (10), is known as RBPF.
g e ey The estimation of hidden states associated with speech
1 0 -+ -+ 0 and noise using a RBPF, is as follows. First, the marginal
) . posterior density of speech is approximated by importance
As=| 0 1T - S weights of particles [4],
: I N
o -~ 0 1 0

p(so:t|y1:¢) Z )53(7) (80:t),
and A,, is constructed in a similar way. =1

IV. SEQUENTIAL MONTE CARLO METHOD where {#\"}, v is normalized importance weights and

A. Generic Particle Filter is the number of the particles. Next, the marginal posterior
Particle filter uses a set of particles to solve nonlinegdensity of noise [3] is given by
and non-Gaussian probabilistic inference problems, appro
imating the true posterior distribution of a hidden stateaby
discrete distribution determined by the evaluation of impo
tance weight at each particle. Estimating posterior dgnsit
sequentially requires two-step procedure. First, we ggaer The marginal posterior density of noise (11) is a mixture
new particles from a proposal densityx;|zo.;—1, y1.¢), of Gaussians where mixing parameters correspond to the

N
ﬁ(n():t |y1:t) = Z ﬁ)ﬁl)p(no:t\s(m, ylzt)~ (11)
i=1

(i) (i) 8 importance weights of particles. Thus, we attach Kalman
@y~ (@01, Y1ae), ) filter to each particle in the RBPF for the inference of noise.
Wherea:g ) {% ’mg )7 o 7m§z)} andyi = {y1,...,u} Next section illustrates the details on the inference.

Second, we update the weiginﬁi) of each particle:

(i) () (0) V. INFERENCE
w? ch() p(yele,  )p(ey |2, ~,) ) .
t t=1 (1)) 0 (9) : A. Inference for the state of noise
(@ @1, Y1:t)
These sequential sampling (the generation of new particles Lets;” (i = 1,2,---, N) be particles of clean speech and
and weight-updating are the main part of particle filter. o be the variance O&t in the noise AR model. We sample

In our inference problem, the likelihoog(y;|x;) is not s§ by the method described i |n Sec. V-B and then propagate
well defined. Moreover, the posterior density of the nois¢he mear)ut ) and covananc@ of n; with a Kalman filter



as follows:

2) Optimal Importance Distribution: The better choice for

(@) —oA,® the proposal density is the optimal importance distributio
Prp—y = Aok that minimizes the variance of the importance weights [4].
2;2 , = A EE e 1AI+02ban, Using Bayes rule, the optimal importance distribution is

i expressed b
r? = 572 b, xP Y
S0:t t— S¢|St—
yt(rt) 1 = bT/—lzi‘lg 1 +bT5(Z) P(3t|50:t—1;y1:t) = p(yt‘ 0:t, Y1t 1)p( t‘ : 1)7 (16)
) . P(YelSo:t—1,Y1:6-1)
H(z) _ N() _»0 p [I‘(”)rl(y _ y(z) ) ) o )
tlt tlt—1 tlt—1 t ¢ tjt—1/ wherep(y:|so.t—1, y1..—1) IS the normalizing constant given
i 7 i T« (2)
OISR NS STHAE S I XD i by
where P(YelS0:t—1,Y1:6-1)
M1 = E{n¢|y1.t—1}, = fp(yt‘s():taylztfl)p(st‘stfl)dsb
H|g £ E{nlyia}, Note that the variable, is the only stochastic component,
Y1 2 E{yelyri—i), in 8¢ = [s¢,...,5—p+1) ' . Thus, Eq. (16) is simplified as
A
i1 = COMNefyre-1), P(selsi—1,y1:¢) < P(Ye|S0:t, Y1:0—1)D(5¢|S¢—-1)- 17
S 2 cov :
e (nelye). The distributionp(s|s;_1) in (17) follows the GE density,
Ly = cov(yilyi—1). hence the sampling might be a time-consuming job. Here we
The predictive density [3] is given by consider the Gaussian-approximation of the GE density, i.e
P(Yely1:e-1, 80:4) = N (Ye; Yeje—1,Tt). (12) ﬁ(sﬂsi?l) = N(St;ifzfl,aﬁ), (18)
Finally the marginal filtering density of noise is estimatad 34;2 L = ang )1’
a minimum mean square estimation (MMSE) method [7], ! 72 c
~ ~ S 0s = 5a»
p(nilyo:e) = N By, Zepe), (13) 26
where Where§t|t_1 is the prediction determined by the GAR model.
The positive constant is a value determined by a user such
By = Z@t(l Hﬂlt, that the shape of Gaussian is similar to that of GE density.
In our experiment, we set= 0.85 for R = 1.25.
N , Using the Gaussian-approximated optimal distribution, we
b)) — ~(1 (7) m )( (l)_/\ )T} I b
tlt Z t\t HW By )\ oy — Fogje) s generate new samples by
B. Inference for the state of clean speech s~ Blsilse1)p(yelsous yr—1),
In the RBPF, updating importance weights in (9) (that is = N(no, Xo), (19)
slightly different from the one in [3]) is done by where
(1)} o(8)
p(yt|3 » Yl:t— 1) (81 718421) i i
wi ocwi?y 0( opes : ) SN €7 po = S —Kiw—yll ),
s )
e 5 = ol Kol
wherep(y:|so.t, y:—1) is the predlctlve density given in (12), K, = o202+T,)""

p(s¢|s¢—1) is the prior distribution determined by the GAR

model for clean speech, ands;|so:.:—1,y1.+) is the proposal Thus, it follows from (16) and (19), the updating rule for

density. Depending on the choice of the proposal densitynportance weights in (14), is simplified as
the updating rule for importance weights is different. We

consider the following two proposal densities: (3) (z) p(St )|3t 1) -

1) Prior Importance Distribution: If we use the prior W oy "5 s ) Pyl s6a—1: Y1), (20)
distribution for the proposal density, i.ex(s;|so.—1, y1:) = St 181
p(s¢|s:—1), then importance weights are simplified as where

wt(” X wEin(wlséfL Y1:t—1)- (15) D(Ye|S0:t—1,Y1:0—1)

The distributionp(y;|s\), y1.._1) in (15) is easily evaluated = J p(yels0:t, yr:0-1)P(st[s:-1) sy

through one-step time-update in the Kalman filter on each p(s18 ) )

particle. However, in such a case, we should generate ndf€ ratio of dlstr|but|ons,m in (20), involves the
particles from GE density, which is a time-consuming taskKifference between GE density and its associated Gaussian

[14]. approximation. It can be viewed as a compensation term



which makes up for the Gaussian approximation-based sapi(«x,.7; 6) given by
pling (19). After updating the importance weights, we nor-

malize them to sum to one, log p(zo.7:6)
T r 2 = T R
; = =1 — =1 — — _
" wt(l) C+ I og 8 5 ogo B;\st o' si_q
wy - = ﬂ T =
> im1 Wy 1
) Z(nt -y ne),

In addition, the resampling scheme is also applied in order t=1
to avoid a degeneracy problem, so that only particles with T
high weights survive. In this way, we obtain a set of particle =~ = O+ Z log p(x4; 0),
which approximate(so.t|y1.¢)- t=1

where C' is a constant which is independent of parameters
andlog p(x:; 6;) is a single factor of the complete-data log-
VI. PARAMETER LEARNING likelihood at timet, given by

So far, parameters involving the speech model as well as log p(;6)

the noise model, are assumed to be known in the inference. s L log 3 — llog o2 = Bls; — o sy )"

However, these parameters are not available in advance. R ] 2

Parameters to be learned, #@e- {«, 8,7, 0%}, Whereq = _F(nt — v )2

[1,...,0,] T is the set of speech GAR model coefficients

in (4), B is the parameter determining the width of the In order to accommodate the sequential learning, we
generalized exponential density in (2, = [v,...,7,]' modify the E-step in such a way that the expected complete-

is the set of noise AR model coefficients in (5), anfl datalog-likelihood is evaluated through the expectativery
is the variance ofe; in the noise AR model (5). In this observations up to (instead of the whole observations). In
section, we present a sequential Newton expectation magther words, the sequential EM updating has the form
imization (SNEM) algorithm which learns model parameters E-step

recursively using the approximated posterior distributad

hidden variables determined by the RBPF. Q(0141,6¢)
= Lir1(0i41)
. t1 ~
A wuentla] EM _ Z /\t+177']E{logp(mT; 97)@1;77 97__1}

T=1

The EM algorithm is an iterative method which finds local ~
maxima of the log-likelihood function. E-step involvesaal = AL(0:) + E{log p(@e1; Or41) Y1, 00},
lating the expected complete-data log-likelihood and bpst where \ is the forgetting factop < A\ < 1.
updates parameters that maximize the expected completem-step
data log-likelihood. In our model (6), the observatignis —~ ~
related to the hidden state; by a deterministic mapping. Orp1 = af% max Q(Or+1,04).
Thus, the parameterized log-distribution of hidden states o
be treated as the complete-data log-likelihood. The quickhe E-step involves computing
summary of EM algorithm is as follows: E{log p(a2: 0:)|y1.0, r1},

E-step . . . . .
which can be carried out using the particle filter,

Q(0,0x) = E{log p(zo.; 0)|y1.r, 0}, (1) . N .
E{log p(@e; 0:)|yra, 6i-1} = Y 0, logp(z}”).  (22)

. . i=1
where T' is a total number of observations and !

p(z;0) represents the probability density #fpa-  The 2nd-order Taylor approximation 6f(6,1,6,), leads to

rameterized by. the M-step [5], [12] that has the form
M-step ~ a1 o~
Opp1 = 0+ H, 1p(0;), (23)
Ok+1 = arg max Q(0,0%). H., = )\H,+ H(%), (24)
where
The EM algorithm described above is a batch algorithm —~
which cannot be directly applied to our learning problem. In #(0:) = E{Vy, logp(xs;0:)y1:t, 0017,

order to develop a sequential EM algorithm, we first consider H(:;) = —E{Vgt log p(x+; 04)|y1:4, @,1}.



These updating rules (23) and (24) are referred teegsen- 1 is the forgetting factor for3. Note that( is restricted

tial Newton-Raphson EM (SNEM). to be a positive value. Thus, the sequential EM can not be
We also consider a simpler updating rule that is of thdirectly applied. Instead, we use a gradient method, fotigw
form a suggestion in [6].
~ ~ ~_1 Updating rules for parameters in the noise model are
01 = O+ NoH(0:) "(6), (25) b g P

simple, since they involve Gaussian distribution. Let us
where), is a sufficiently-small positive constant. The updatdefine the matrixV; as

ing rule (25) use only current Hessid#i(0;). In such a case, A T ~
we employ the quasi-Newton method where the inverse of the Vi = E{nn |y, 61}
Hessian is approximated. This simpler algorithm is reférre _ [ thl th2 } ’

to assequential quasi-Newton EM (SQEM). vit vy
B. Sequential Updating Rules wheren, = [n, m,_1]', V;'is ascalarV? is agq x ¢
matrix, and V12 = (V21)Tis a ¢-dimensional vector [6]
It follows from (22) and (22) that we have ' t Vi) q .

—~ With these definitions, updating rules are given by
E{logp(wt; 9t)\y1:t,9t71}

o~ ~ —=-1(n) (o
= E{logp(ss; o, Be)|y1:, 01} Vi1 = Y+ Hiy o )(6y), (29)
E{l Yo o)y, 01}, 26 1— A _

+ {log p(ne; ves 07)y1:e, 01} (26) Ut2+1 - Z)\t T+1{V11 T V12}(30)
which implies that updating parameters for speech and noise —A
can be done separately. In addition, the decomposition (26) 7(n) | =5(n) ()7
allows us to evaluate the statistical expectation using RBP Hy = AH +H7(6,),
The first term in Eq. (26) is approximated by where

Mgy = . N1 O,
E{log p(st; at, Br)|y1:t, ‘9t 1}~ Zw( )IOgP(Sf s, Be), 2 0) E{v7 logp(ntH,7)\,7:,7t|y1,t+1, Or)
=t = A2 {Vt+1 Vf-QH’AYt}

where s(L) is particles of the RBPF. The second term in PN ~
Eq. (26) can be easily calculated, because the expectation 1~ (01) = _E{V’Y log p(12i4137)|ly—5, [Y1:e41, 6c}
carried out with respect to Gaussian distribution givendn E _ i{sz }
(13). Therefore, the sequential parameter updating isecarr g2tk

out in the framework of RBPF.
Updating rules for parameter§a:, 5;} in the speech
model, are given by

and0 < )\, < 1 is the forgetting factor for2.
As mentioned in Sec. VI-A, we also apply the sequen-

o) tial Quasi-Newton method. Our two proposed algorithms

Qi1 = 04+ Ht+1 4,0(8)(@), (27) are referred to as: (1) RBPF+SNEM (Rao-Blackwellized
R 1— particle filtering+ sequential Newton-Raphson EM); (2)
Bry1 = ﬁ{ﬁ(t + 1)}, (28) RBPF+SQEM (Rao-Blackwellized particle filtering+ sequen-
—(s) —( )S N tial quasi-Newton EM). The outline of our sequential speech
1 = MH, +HY(0), enhancement method is summarized in Table .
where TABLE |
~ ALGORITHM OUTLINE: OUR SEQUENTIAL SPEECH ENHANCEMENT
ol )(gt) = E{Va log p(st+1; )| q—g, [Y1:0+1, 0t }
_ 5tR @(7 sian(e e R— 15( i) Generation step Generate particles according to (19) and update
Z 1 gn( t+1)| t+1| b p.glg 1 andzil’z , for each Kalman filter.
~ ~ Weight updating step Update importance weights by (20) and
H® (0:) = —]E{Va log p(st41; )‘a:&t [Y1:t41,0¢ ) normalize them to sum to one.
N _ Resampling step Resample partlcles{ut‘t 1722‘22 1 “ 1} ac
= R k-2 (1) (T cording to importance weights, using the method in [gi
ﬁt t+1 t+1 S¢ )
— MCMC diversity step: Apply Markov Chain Monte Carlo (MCMC)
= to the invariant distributionp(so:¢|y1:¢), leading some particles to
A 1 1 R ~ move a more probable region within preserving the invariastriti
et+1) = > AT RE{le,|®ly1.r, 0- 1}, ution [1].
=1 Kalman update step Update{p,i 2, EE"E} through Kalman using the
_ Ry, 0 update rule for Kalman filter in sectlon (V-A).
)\Se(t) + RE{‘GHH |y1 D gt}’ ) Parameter estimation step Update parameters of both speech and
€141 = St41 — a:st, 6&421 = 515-21 — ajsy), noise model using sequential Newton or Quasi-Newton EM édlgar
o in section VI

wheree; is a prediction error in the speech GAR model and
e§“ is a prediction error of each particle atd< A\, <



E XPERIMENTAL RESULTS SNR > 5dB), the observed signal is closer to actual speech

VII.
For experiments, we used a speech signal that is public}iﬂnal’ implying that it is far from Gaussian assumption.
available !. The speech signal was resampled at 8 kH such a case, we observe that our m_ethods are much
and first 5000 data pointsT(= 5000) were used in our more appropriate, compared to Kalman filter-based meth-

ods. RBPF+SQEM is quite comparable to RBPF+SNEM,

experiments. ) :
The order of the speech GAR model was setpas 12 although the former takes a simpler updating rule than the
latter.

and the order of the noise AR model was seyyas 5. The
value of R in the generalized exponential density was set as
R = 1.25. The number of particles wer& = 200.

As a performance measure, we evaluate output signg

VIIl. CONCLUSIONS

We have presented new sequential speech enhancement al-
orithm which employ the GAR speech model in order to ac-
ommodate the non-Gaussian characteristics of speech. Two
new algorithms, including RBPF+SNEM and RBPF+SQEM,

noise-ratio (SNR), with respect to various input SNR. Th
output SNR is defined by

ZfT—1 s2 employ Rao-Blackwellized particle filter for inference and
SNRowe = 10logyg 7= —— - update model parameters using the sequential EM method.
t=1[se = 5¢] Experimental results confirmed the high performance of
s XN:w(i)st(i) our proposed methods, compared to Kalman filter-based
¢ t U Tt methods.
i=1
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runs for each input SNR.

We compare our method to a Kalman filter-based sequen-
tial speech enhancement method. Kalman-gradient-descerit] C : _ _ _
sequential (KGDS) algorithm [6], employs Gaussian density gc_)z?fozl\ggg/lc for machine learning Machine Learning, vol. 50, pp.
for speech model and updates parameters sequentially using s. Choi, A. Cichocki, and S. Amari, “Flexible independesimponent
a gradient method. For the case of high input SNR, KGDS analysis,"Journal of VLS Sgnal Processing, vol. 26, no. 1/2, pp. 25—
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