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Abstract. In this paper we present a new method of 3D non-negative
tensor factorization (NTF) that is robust in the presence of noise and has
many potential applications, including multi-way blind source separa-
tion (BSS), multi-sensory or multi-dimensional data analysis, and sparse
image coding. We consider alpha- and beta-divergences as error (cost)
functions and derive three different algorithms: (1) multiplicative updat-
ing; (2) fixed point alternating least squares (FPALS); (3) alternating
interior-point gradient (AIPG) algorithm. We also incorporate these al-
gorithms into multilayer networks. Experimental results confirm the very
useful behavior of our multilayer 3D NTF algorithms with multi-start
initializations.

1 Models and Problem Formulation

Tensors (also known as n-way arrays or multidimensional arrays) are used in a
variety of applications ranging from neuroscience and psychometrics to chemo-
metrics [1–4]. Nonnegative matrix factorization (NMF), Non-negative tensor fac-
torization (NTF), parallel factor analysis PARAFAC and TUCKER models with
non-negativity constraints have been recently proposed as promising sparse and
quite efficient representations of signals, images, or general data [1–14]. ¿From a
viewpoint of data analysis, NTF is very attractive because it takes into account
spacial and temporal correlations between variables more accurately than 2D
matrix factorizations, such as NMF, and it provides usually sparse common fac-
tors or hidden (latent) components with physical or physiological meaning and
interpretation [4]. One of our motivation is to develop flexible NTF algorithms
which can be applied in neuroscience (analysis of EEG, fMRI) [8, 15, 16].

The basic 3D NTF model considered in this paper is illustrated in Fig. 1 (see
also [9]). A given tensor X ∈ RI×T×K

+ is decomposed as a set of matrices A ∈
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Fig. 1. NTF model that decomposes approximately tensor X ∈ RI×T×K
+ to set of

nonnegative matrices A = [air] ∈ RI×R
+ , D ∈ RK×R and {S1, S2, . . . , SK}, Sk =

[srtk] =∈ RR×T
+ , E ∈ RI×T×K is a tensor representing errors.

RI×R
+ , D ∈ RK×R

+ and the 3D tensor with the frontal slices {S1, S2, ..., SK} with
nonnegative entries. Here and elsewhere, R+ denotes the nonnegative orthant
with appropriate dimensions. The three-way NTF model is given by

Xk = ADkSk + Ek, (k = 1, 2, . . . , K) (1)

where Xk = X :,:,k ∈ RI×T
+ are the frontal slices of X ∈ RI×T×K

+ , K is a num-
ber of vertical slices, A = [air] ∈ RI×R

+ is the basis (mixing matrix) representing
common factors, Dk ∈ RR×R

+ is a diagonal matrix that holds the k-th row of
the matrix D ∈ RK×R

+ in its main diagonal, and Sk = [srtk] ∈ RR×T
+ are ma-

trices representing sources (or hidden components), and Ek = E:,:,k ∈ RI×T is
the k-th vertical slice of the tensor E ∈ RI×T×K representing errors or noise
depending upon the application. Typically, for BSS problems T >> I ≥ K > R.
The objective is to estimate the set of matrices A, D and {S1, . . . , SK} sub-
ject to some non-negativity constraints and other possible natural constraints
such as sparseness and/or smoothness on the basis of only X. Since the di-
agonal matrices Dk are scaling matrices, they can usually be absorbed by the
matrices Sk by introducing row-normalized matrices Sk := DkSk, hence Xk =
ADkSk+Ek. Thus in BSS applications the matrix A and the set of scaled source
matrices S1, . . . , SK need only to be estimated. Throughout this paper, we use
the following notation: the ir-th element of the matrix A is denoted by air,
xitk = [Xk]it means the it-th element of the k-th frontal slice Xk, srtk = [Sk]rt,
S̄ = [S1,S2, . . . , SK ] ∈ RR×KT

+ is a row-wise unfolded matrix of the slices Sk,
analogously, X̄ = [X1,X2, . . . , XK ] ∈ RI×KT

+ is a row-wise unfolded matrix of
the slices Xk and x̄ip = [X̄]ip, s̄rt = [S̄]rt.

2 Cost Functions and Associated NTF Algorithms

To deal with the factorization problem (1) efficiently we adopt several approaches
from constrained optimization and multi-criteria optimization, where we mini-
mize simultaneously several cost functions using alternating switching between
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sets of parameters [5, 6, 11–13]. Alpha and Beta divergences are two complimen-
tary cost functions [6, 7, 17]. Both divergences build up a wide class of generalized
cost functions which can be applied for NMF and NTF [7, 8].

2.1 NTF Algorithms Using α-Divergence

Let us consider a general class of cost functions, called α-divergence [17, 6]:

D(α)(X̄||AS̄) =
1

α(α− 1)

∑

ip

(x̄α
ip[AS̄]1−α

ip − αx̄ip + (α− 1)[AS̄]ip) (2)

D
(α)
k (Xk||ASk) =

1
α(α− 1)

∑

itk

(xα
itk[ASk]1−α

it − αxitk + (α− 1)[ASk]it).(3)

We note that as special cases of the α-divergence for α = 2, 0.5,−1, we obtain
the Pearson’s, Hellinger’s and Neyman’s chi-square distances, respectively, while
for the cases α = 1 and α = 0 the divergence has to be defined by the limits:
α → 1 and α → 0, respectively. When these limits are evaluated one obtains for
α → 1 the generalized Kullback-Leibler divergence (I-divergence) and for α → 0
the dual generalized KL divergence [6–8].
Instead of applying the standard gradient descent method, we use the nonlinearly
transformed gradient descent approach which can be considered as a generaliza-
tion of the exponentiated gradient (EG):

Φ(srtk) ← Φ(srtk)− ηrtk
∂DA(Xk||ASk)

∂Φ(srtk)
, Φ(air) ← Φ(air)− ηir

∂DA(X̄||AS̄)
∂Φ(air)

,

where Φ(x) is a suitably chosen function.
It can be shown that such a nonlinear scaling or transformation provides a stable
solution and the gradients are much better behaved in the Φ space. In our case,
we employ Φ(x) = xα (for α 6= 0) and choose the learning rates as follows

ηrtk = α2Φ(srtk)/(s1−α
rtk

I∑

i=1

air), ηir = α2Φ(air)/(a1−α
ir

KT∑
p=1

s̄rp), (4)

which leads directly to the new learning algorithm 4: (the rigorous proof of local
convergence similar to this given by Lee and Seung [13] is omitted due to a lack
of space):

srtk ← srtk

(∑I
i=1 air (xitk/[ASk]it)

α

∑I
q=1 aqr

)1/α

, (5)

air ← air

(∑KT
p=1

(
x̄ip/[AS̄]ip

)α
s̄rp∑KT

q=1 s̄rq

)1/α

. (6)

4 For α = 0 instead of Φ(x) = xα, we have used Φ(x) = ln(x), which leads to
a generalized SMART algorithm: srtk ← srtk

QI
i=1(xitk/[ASk]it)

ηrair and air ←
air

QKT
p=1

�
x̄ip/[AS̄]ip

�η̃r s̄rp [7].
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The sparsity constraints are achieved via suitable nonlinear transformation in
the form srtk ← (srtk)1+γ where γ is a small coefficient [6].

2.2 NTF Algorithms using β-Divergence

The β-divergence can be considered as a general complimentary cost function to
α-divergence defined above [6, 7]. Regularized β-divergences for the NTF prob-
lem can be defined as follows:

D(β)(X̄||AS̄) =
∑

ip

(
x̄ip

x̄β
ip − [AS̄]βip
β(β + 1)

+ [AS̄]βip
[AS̄]ip − x̄ip

β + 1

)
+ αA‖A‖L1,

(7)

D
(β)
k (Xk||ASk) =

∑

it

(
xitk

xβ
itk − [ASk]βit
β(β + 1)

+ [ASk]βit
[ASk]it − xitk

β + 1

)
+

+αSk
‖Sk‖L1, (8)

for i = 1, . . . , I, t = 1, . . . , T, k = 1, . . . , K, p = 1, . . . , KT , where αSk

and αA are small positive regularization parameters which control the degree
of sparseness of the matrices S and A, respectively, and the L1-norms defined
as ||A||L1 =

∑
ir |air| =

∑
ir air and ||Sk||L1 =

∑
rt |srtk| =

∑
rt srtk are in-

troduced to enforce a sparse representation of the solution. It is interesting to
note that in the special case for β = 1 and αA = αSk

= 0, we obtain the square
Euclidean distance expressed by the Frobenius norm ‖Xk −ASk‖2F , while for
the singular cases, β = 0 and β = −1, the unregularized β-divergence has to be
defined as limiting cases as β → 0 and β → −1, respectively. When these limits
are evaluated one gets for β → 0 the generalized Kullback-Leibler divergence
(I-divergence) and for β → −1 we obtain the Itakura-Saito distance.

The choice of the β parameter depends on a statistical distribution of the
data and the β-divergence corresponds to the Tweedie models [17]. For exam-
ple, the optimal choice of the parameter for the normal distribution is β = 1,
for the gamma distribution is β → −1, for the Poisson distribution β → 0, and
for the compound Poisson β ∈ (−1, 0). By minimizing the above formulated β-
divergences, we can derive various kinds of NTF algorithms: Multiplicative based
on the standard gradient descent, Exponentiated Gradient (EG), Projected Gra-
dient (PG), Alternating Interior-Point Gradient (AIPG), or Fixed Point (FP)
algorithms. By using the standard gradient descent, we obtain the multiplicative
update rules:

srtk ← srtk
[
∑I

i=1 air (xitk/[ASk]1−β
it )− αSk

]ε∑I
i=1 air [ASk]βit

, (9)

air ← air

[
∑KT

p=1(x̄ip/[AS̄]1−β
ip ) s̄rp − αA]ε∑KT

p=1[AS̄]βip s̄rp

, (10)

where the half-wave rectification defined as [x]ε = max{ε, x} with a positive
small ε = 10−16 is introduced in order to avoid zero and negative values.
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In the special case, for β = 1, we can derive a new alternative algorithm
refereed as, FPALS (Fixed Point Alternating Least Squares) algorithm [8]:

Sk ←
[
(AT A + γAE)+(AT Xk − αSk

ES)
]

ε
, (11)

A ←
[
(X̄S̄

T − αAEA)(S̄S̄
T + γSE)+

]
ε
, (12)

where A+ denotes Moore-Penrose pseudo-inverse, E ∈ RR×R, ES ∈ RR×T and
EA ∈ RI×R are matrices with all ones and the function [X]ε = max{ε, X}
is componentwise. The above algorithm can be considered as a nonlinear pro-
jected Alternating Least Squares (ALS) or nonlinear extension of the EM-PCA
algorithm5.

Furthermore, using the Alternating Interior-Point Gradient (AIPG) approach
[18], another new efficient algorithm has been derived:

Sk ← Sk − ηSk
P Sk

, P Sk
=

(
Sk ® (AT ASk)

)
¯

(
AT (ASk −Xk)

)
,(13)

A ← A− ηAP A, P A =
(
A® (AS̄S̄

T )
)
¯

(
(AS̄ − X̄)S̄T

)
, (14)

where the operators ¯ and ® mean component-wise multiplication and division,
respectively. The learning rates ηSk

and ηA are selected in this way to ensure
the steepest descent, and on the other hand, to maintain non-negativity. Thus,
ηSk

= min{τ η̂Sk
, η∗Sk

} and ηA = min{τ η̂A, η∗A}, where τ ∈ (0, 1), η̂Sk
= {η :

Sk − ηP Sk
} and η̂A = {η : A− ηP A} ensure non-negativity, and

η∗Sk
=

vec(P Sk
)T vec(AT ASk −AT Xk)

vec(AP Sk
)T vec(AP Sk

)
, η∗A =

vec(P A)T vec(AS̄S̄
T − X̄S̄

T )
vec(P AS̄)T vec(P AS̄)

are the adaptive steepest descent learning rates [8].

3 Multi-layer NTF

In order to improve the performance of all the developed NTF algorithms, espe-
cially for ill-conditioned and badly scaled data and also to reduce risk of getting
stuck in local minima in non-convex alternating minimization computations,
we have developed a simple hierarchical and multi-stage procedure combined
together with multi-start initializations, in which we perform a sequential de-
composition of nonnegative matrices as follows. In the first step, we perform
the basic decomposition (factorization) Xk = A(1)S

(1)
k using any available NTF

algorithm. In the second stage, the results obtained from the first stage are
used to perform the similar decomposition: S

(1)
k = A(2)S

(2)
k using the same or

5 In order to drive the modified FPALS algorithm, we have used the following
regularized cost functions: ‖Xk − ASk‖2F + αSk‖Sk‖L1 + γS tr{ST

k ESk} and
‖X̄ − AS̄‖2F + αA‖A‖L1 + γA tr{AEAT }, where γS , γA are nonnegative regular-
ization coefficients imposing some kinds of smoothness and sparsity.
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different update rules, and so on. We continue our decomposition taking into ac-
count only the last achieved components. The process can be repeated arbitrarily
many times until some stopping criteria are satisfied. In each step, we usually
obtain gradual improvements of the performance. Thus, our NTF model has the
form: Xk = A(1)A(2) · · ·A(L)S

(L)
k , with the basis nonnegative matrix defined

as A = A(1)A(2) · · ·A(L). Physically, this means that we build up a system that
has many layers or cascade connections of L mixing subsystems. The key point
in our novel approach is that the learning (update) process to find parameters
of sub-matrices S

(l)
k and A(l) is performed sequentially, i.e. layer by layer. This

can be expressed by the following procedure [7, 8, 19]:
Outline Multilayer NTF Algorithm
Initialize randomly A(l) and/or S

(l)
k and perform the alternating minimization

till convergence:
S

(l)
k ← arg min

S
(l)
k ≥0

{
Dk

(
S

(l−1)
k || A(l)S

(l)
k

)}
, k = 1, . . . , K, S̄

(l) = [S(l)
1 , . . . , S

(l)
K ],

A(l) ← arg min
A(l)≥0

{
D̃

(
S̄

(l−1)|| A(l)S̄
(l)

)}
, [A(l)]ir ←

[
air/

I∑

i=1

air

](l)

,

Sk = S
(L)
k , A = A(1) · · ·A(L),

where Dk and D̃ are the cost functions (not necessary identical) used for esti-
mation of Sk and A, respectively.

An open theoretical issue is to prove mathematically or explain more rigor-
ously why the multilayer distributed NTF system with multi-start initializations
results in considerable improvement in performance and reduces the risk of get-
ting stuck in local minima. An intuitive explanation is as follows: the multilayer
system provides a sparse distributed representation of basis matrices A(l), so
even a true basis matrix A is not sparse it can be represented by a product
of sparse factors. In each layer we force (or encourage) a sparse representation.
We found by extensive experiments that if the true basis matrix is sparse, most
standard NTF/NMF algorithms have improved performance (see next section).
However, in practice not all data provides a sufficiently sparse representation,
so the main idea is to model any data by cascade connections of sparse sub-
systems. On the other hand, such multilayer systems are biologically motivated
and plausible.

4 Simulation Results

All the NMF algorithms presented in this paper have been extensively tested
for many difficult benchmarks for signals and images with various statistical dis-
tributions of signals and additive noise, and also for preliminary tests with real
EEG data. Due to space limitations we present here only comparison of proposed
algorithms for a typical benchmark. The simulations results shown in Table 1
have been performed for the synthetic benchmark in which the nonnegative
weakly statistically dependent 100 hidden components or sources (spectra) are
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collected in 20 slices Sk ∈ R5×1000
+ , each representing 5 different kind of spectra.

The sources have been mixed by the common random matrix A ∈ R10×5
+ with a

uniform distribution. In this way, we obtained the 3D tensor X ∈ R10×1000×20

of overlapped spectra. Table 1 shows the averaged SIR (standard signal to in-
terference ratio) performance obtained from averaging the results from 100 runs
of the Monte Carlo (MC) analysis for recovering of the original spectra Sk and
the mixing matrix A for various algorithms and for different number of layers
1–5. (Usually, it assumed that SIR ≥ 20dB provides a quite good performance,
and over 30dB excellent performance.) We have also applied and tested the

Fig. 2. Selected slices of: (top) the original spectra signals (top); mixed signals with
dense mixing matrix A ∈ R10×5

developed algorithms for real-world EEG data and neuroimages. Due to space
limitation these results will be presented in the conference and on our website.

5 Conclusions and Discussion

The main objective and motivation of this paper was to develop and com-
pare leaning algorithms and compare their performance. We have extended the
3D non-negative matrix factorization (NMF) models to multi-layer models and
found that the best performance is obtained with the FPALS and AIPG algo-
rithms. With respect to the standard NTF (single layer) models, our model and
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Fig. 3. Spectra signals estimated with the FPALS (11)–(12) using 3 layers for γA =
γS = αSk = αA = 0. The signals in the corresponding slices are scored with: SIRs(1-st
slice) = 47.8, 53.6, 22.7, 43.3, 62; SIRs(2-nd slice) = 50, 52.7, 23.6, 42.5, 62.7; and
SIRs(3-d slice) = 50.1, 55.8, 30, 46.3, 59.9; [dB], respectively.

Fig. 4. Histograms of 100 mean-SIR samples from Monte Carlo analysis performed
using the following algorithms with 5 layers: (left) Beta Alg. (9)–(10), β = 0; (right)
FPALS (11)–(12) for γA = γS = αSk = αA = 0.

Table 1. Mean SIRs in [dB] obtained from 100 MC samples for estimation of the
columns in A and the rows (sources) in Sk versus the number of layers (Multi-layer
technique), and for the selected algorithms.

ALGORITHMS: LAYERS (SIRs A) LAYERS (SIRs S)

(Equations) 1 2 3 4 5 1 2 3 4 5

Alpha Alg. (5–6): α = 0.5 9.1 15.6 19 21.8 24.6 7.8 13.5 16.5 18.9 21.2

Beta Alg. (9–10): β = 0 11.9 20.9 27.8 29.5 30.8 8.1 16.4 22.9 24.4 25.6

AIPG (13–14) 14 22.7 29 33.1 35.4 10.1 18 24.1 28.4 30.6

FPALS (11–12) 20.7 35 42.6 46 47.2 19.4 32.7 41.7 46.1 48.1
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Table 2. Elapsed times (in seconds) for 1000 iterations with different algorithms.

No. layers Alpha Alg. (5–6) Beta Alg. (9–10) AIPG (13–14) FPALS (11–12)

α = 0.5 β = 0

1 23.7 4.7 11.8 3.8

3 49.3 11.3 32.8 10.3

proposed algorithms can give much better performance or precision in factoriza-
tions and better robustness against noise. Moreover, we considered a wide class
of the cost functions which allows us to derive a family of robust and efficient
NTF algorithms with only single parameter to tune (α or β). The optimal choice
of the parameter in the cost function depends and on a statistical distribution of
data and additive noise, thus different criteria and algorithms (updating rules)
should be applied for estimating the basis matrix A and the source matrices
Sk, depending on a priori knowledge about the statistics of noise or errors. We
found by extensive simulations that the multi-layer technique combined together
with multi-start initialization plays a key role in improving the performance of
blind source separation when using the NTF approach. It is worth mention-
ing that we can use two different strategies. In the first approach presented in
details in this contribution we use two different cost functions: A global cost
function (using row-wise unfolded matrices: X̄, S̄ and 2D model X̄ = AS̄)
to estimate the common factors, i.e., the basis (mixing) matrix A; and local
cost functions to estimate the frontal slices Sk, (k = 1, 2, ..., K). However, it
is possible to use a different approach in which we use only a set of local cost
functions, e.g., Dk = 0.5||Xk −ASk||2F . In such a case, we estimate A and Sk

cyclically by applying alternating minimization (similar to row-action projection
in the Kaczmarz algorithm). We found that such approach also works well for
the NTF model. We have motivated the use of proposed 3D NTF in three areas
of data analysis (especially, EEG and fMRI) and signal/image processing: (i)
multi-way blind source separation, (ii) model reductions and selection, and (iii)
sparse image coding. Our preliminary experiments are promising.

The proposed models can be further extended by imposing additional, natural
constraints such as smoothness, continuity, closure, unimodality, local rank -
selectivity, and/or by taking into account a prior knowledge about specific 3D,
or more generally, multi-way data.

Obviously, there are many challenging open issues remaining, such as global
convergence, an optimal choice of the parameters and the model.
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