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ABSTRACT

In this paper we propose new algorithms for 3D tensor de-
composition/factorization with many potential applications,
especially in multi-way Blind Source Separation (BSS), mul-
tidimensional data analysis, and sparse signal/image repre-
sentations. We derive, compare and implement in MATLAB
NTFLAB Toolbox three classes of algorithms: Multiplica-
tive, Fixed Point Alternating Least Squares (FPALS) and Al-
ternating Interior-Point Gradient (AIPG) algorithms. Some
of the proposed algorithms are characterized by improved ro-
bustness, efficiency and convergence rates and can be applied
for various distributions of data and additive noise.

Index Terms— Algorithms, Learning systems, Linear ap-
proximation, Signal representations, Feature extraction.

1. MODELS AND PROBLEM FORMULATION

Tensors (also known as n-way arrays or multidimensional ar-
rays) are used in a variety of applications ranging from neu-
roscience and psychometrics to chemometrics [6,8,9,17-19].
Nonnegative matrix factorization (NMF), Non-negative ten-
sor factorization (NTF) and parallel factor analysis PARAFAC
models with non-negativity constraints have been recently pro-
posed as promising sparse and quite efficient representations
of signals, images, or general data [2-7,10-13]. From a view-
point of data analysis, NTF is very attractive because it takes
into account spacial and temporal correlations between vari-
ables more accurately than 2D matrix factorizations, such as
NMF, and it provides usually sparse common factors or hid-
den (latent) components with physiological meaning and in-
terpretation [9,15]. In most applications, especially in neuro-
science (EEG, fMRI), the standard NTF or PARAFAC mod-
els were used [15,16]. In this paper we consider more gen-
eral model referred to as 3D NTF2 model (in analogy to the
Parafac2 model [17]) (see Fig. 1). A given tensor X ∈
RI×T×K

+ is decomposed to a set of matrices S, D and
{A1,A2, ..., AK} with nonnegative entries. Here and else-
where, R+ denotes the nonnegative orthant with appropriate
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dimensions. The three-way NTF2 model can be described as

Xk = AkDkS + Ek, (k = 1, 2, . . . , K) (1)

where Xk = X :,:,k = [xitk]I×T ∈ RI×T
+ are frontal slices

of X ∈ RI×T×K
+ , K is the number of frontal slices, Ak =

[airk]I×R ∈ RI×R
+ are the basis (mixing matrices), Dk ∈

RR×R
+ is a diagonal matrix that holds the k-th row of the

D ∈ RK×R
+ in its main diagonal, and S = [srt]R×T ∈

RR×T
+ is a matrix representing sources (or hidden compo-

nents or common factors), and Ek = E:,:,k ∈ RI×T is the
k-th frontal slice of a tensor E ∈ RI×T×K representing er-
ror or noise depending upon the application. The objective
is to estimate the set of matrices {Ak}, (k, . . . ,K), D and
S, subject to some non-negativity constraints and other pos-
sible natural constraints such as sparseness and/or smooth-
ness. Since the diagonal matrices Dk are scaling matrices
they can usually be absorbed by the matrices Ak by introduc-
ing column-normalized matrices Ak := AkDk, so usually
in BSS applications the matrix S and the set of scaled ma-
trices A1, . . . , AK need only to be estimated. However, in
such a case we may loose the uniqueness of the NTF repre-
sentation ignoring scaling and permutation ambiguities. The
uniqueness still can be achieved by imposing nonnegativity,
sparsity and other constraints. The above NTF2 model is sim-
ilar to the well known PARAFAC2 model with non-negativity
constraints and Tucker models [6,15,17]. In the special case,
when all matrices Ak are identical, the NTF2 model can be
simplified to the ordinary PARAFAC model with the non-
negativity constraints described Xk = ADkS + Ek, k =
1, . . . ,K or equivalently xitk =

∑
r airsrtdkr +eitk or X =∑

r ar⊗sT
r ⊗dr +E, where sr are rows of S and ar, dr are

columns of A and D, respectively and⊗means outer product
of vectors [8,9]. Throughout this paper, we use the following
notation: the rt-th element of the matrix S is denoted by srt,
xitk = [Xk]it means the it-th element of the k-th frontal slice
matrix Xk, Ā = [A1;A2; . . . ;AK ] ∈ RKI×R

+ is a column-
wise unfolded matrix of the slices Ak, āpr = [Ā]pr. Analo-
gously, X̄ = [X1;X2; . . . ;XK ] ∈ RKI×T

+ is the column-
wise unfolded matrix of the slices Xk and x̄pt = [X̄]pt.
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Fig. 1. (a) NTF2 model in which 3D tensor is decomposed
to set of nonnegative matrices: {A1, . . . , AK}, D, S. (b)
Equivalent representation in which frontal slices of tensor are
factored by set of matrices (tensor E representing error is
omitted for simplicity).

2. ALPHA AND BETA DIVERGENCES AND
ASSOCIATED ALGORITHMS

To deal with the model (1) efficiently we adopt several ap-
proaches from constrained optimization and multi-criteria op-
timization, where we minimize simultaneously several cost
functions using alternating switching between sets of param-
eters. Alpha and Beta divergences are two complimentary
generalized cost functions which can be applied for NMF and
NTF [1,3,4,5,20].

2.1. Alpha Divergence

Let us consider a flexible and general class of the cost func-
tions, called α-divergence [1,3,4]:

D
(α)
A (X̄||ĀS) =

∑
pt(x̄

α
pt[ĀS]1−α

pt − αx̄pt + (α− 1)[ĀS]pt)
α(α− 1)

D
(α)
Ak (Xk||AkS) =

=
∑

it(x
α
itk[AkS]1−α

it − αxitk + (α− 1)[AkS]it)
α(α− 1)

We note that as special cases of α-divergence for α = 2, 0.5,−1,
we obtain the Pearson’s, Hellinger’s and Neyman’s chi-square
distances, respectively, while for the cases α = 1 and α = 0
the divergence has to be defined by the limits: α → 1 and
α → 0, respectively. When these limits are evaluated one ob-
tains for α → 1 the generalized Kullback-Leibler divergence
(I-divergence) and for α → 0 the dual generalized KL diver-
gence [1,3,4].

Instead of applying the standard gradient descent method, we
use the nonlinearly transformed gradient approach as gener-
alization of the exponentiated gradient (EG)[4] :

Φ(airk) ← Φ(airk)− ηirk

∂D
(α)
Ak

(Xk||AkS)
∂Φ(airk)

, (2)

Φ(srt) ← Φ(srt)− ηrt
∂D

(α)
A (X̄||ĀS)
∂Φ(srt)

, (3)

where Φ(x) is a suitably chosen function.
It can be shown that such a nonlinear scaling or transforma-
tion provides a stable solution and the gradients are much bet-
ter behaved in the space Φ. In our case, we employ Φ(x) =
xα, which leads directly to the new learning algorithm (for
α 6= 0) (the rigorous proof of local convergence similar to
this given by Lee and Seung [12] is omitted due to a lack of
space):

airk ← airk

(∑T
t=1 (xitk/[AkS]it)

α
srt∑T

t=1 srt

)1/α

, (4)

srt ← srt

(∑KI
p=1 āpr

(
x̄pt/[ĀS]pt

)α

∑KI
p=1 āpr

)1/α

. (5)

2.2. Beta Divergence

Regularized beta divergence for the NTF2 problem can be de-
fined as follows:

D(β)(X̄||ĀS) =
∑
pt

(x̄pt

x̄β
pt − [ĀS]βpt

β(β + 1)

+[ĀS]βpt

[ĀS]pt − x̄pt

β + 1
) + αS‖S‖L1, (6)

D
(β)
k (Xk||AkS) =

∑

it

(xitk
xβ

itk − [AkS]βit
β(β + 1)

+[AkS]βit
[AkS]it − xitk

β + 1
) + αAk

‖Ak‖L1, (7)

k = 1, . . . , K, t = 1, 2, . . . , T, i = 1, 2, . . . , I,

where αS and αAk
are small positive regularization parame-

ters which control the degree of sparseness of the matrices S
and Ak, respectively, and the L1-norms defined as ||S||L1 =∑

rt |srt| and ||Ak||L1 =
∑

ir |airk| are introduced to en-
force sparse representations of the solutions. It is interesting
to note that for β = 1, we obtain the squared Euclidean dis-
tances expressed by the Frobenius norms ‖Xk − AkS‖2F ,
while for the singular cases, β = 0 and β = −1, the beta
divergence has to be defined as limiting cases as β → 0
and β → −1, respectively. When these limits are evaluated
one gets for β → 0 the generalized Kullback-Leibler diver-
gence (called I-divergence) and for β → −1 we obtain the
Itakura-Saito distance. The choice of the parameter β de-
pends on the statistical distribution of the data and the beta



divergence corresponds to the Tweedie models. For exam-
ple, the optimal choice of the parameter for the normal dis-
tribution is β = 1, for the gamma distribution is β → −1,
for the Poisson distribution β → 0, and for the compound
Poisson β ∈ (−1, 0). By minimizing the beta divergence,
we have derived various kinds of NTF algorithms: Multi-
plicative based on the standard gradient descent, Exponen-
tiated Gradient (EG), Projected Gradient (PG), Alternating
Interior-Point Gradient (AIPG), or Fixed Point Alternating
Least Squares (FPALS) algorithms. For example, in order to
derive a flexible multiplicative learning algorithm, we com-
pute the gradient of (6)-(7) with respect to elements of matri-
ces srt = sr(t) = [S]rt and airk = [Ak]ir and performing
simple mathematical manipulations we obtain the multiplica-
tive update rules:

airk ← airk
[
∑T

t=1(xitk/[AkS]1−β
it ) srt − αAk

]ε∑T
t=1[AkS]βit srt

,(8)

srt ← srt

[
∑KI

p=1 āpr (x̄itk/[ĀS]1−β
it )− αS ]ε∑KI

p=1 āpr [ĀkS]βit
, (9)

where [x]ε = max{ε, x} with a small ε = 10−16 is intro-
duced in order to avoid zero and negative values.

In the special case for β = 1 we can derive an alterna-
tive algorithm, called FPALS (Fixed Point Alternating Least
Squares) algorithm (see [5] for detail)

Ak ←
[
(XkST − αAk

EA)(SST )+
]

ε
, (10)

S ←
[
(ĀT

Ā)+(ĀT
X̄ − αSES)

]
ε
, (11)

where [A]+ denotes Moore-Penrose pseudo-inverse of A and
EA ∈ RI×R, ES ∈ RR×T are matrices with all entries
one. The above algorithm can be considered as a nonlinear
projected Alternating Least Squares (ALS) or nonlinear ex-
tension of EM-PCA algorithm.

Furthermore, using the Alternating Interior-Point Gradi-
ent (AIPG) approach [14], another efficient algorithm has been
developed and implemented [5]:

Ak ← Ak − ηAk
P Ak

, (12)
S ← S − ηSP S , (13)

where P Ak
=

(
Ak ® (AkSST )

)
¯

(
(AkS −Xk)ST

)
,

P S =
(
S ® (ĀT

ĀS)
)
¯

(
Ā

T (ĀS − X̄)
)

and operators
¯ and ® mean component-wise multiplication and division,
respectively. The learning rates ηAk

and ηS are selected in
this way to ensure the steepest descent, and on the other hand,
to maintain non-negativity. Thus, ηS = min{τ η̂S , η∗S} and
ηAk

= min{τ η̂Ak
, η∗Ak

}, where τ ∈ (0, 1), η̂S = {η : S −
ηP S} and η̂Ak

= {η : Ak − ηP Ak
} ensure non-negativity,

and

η∗Ak
=

vec(P Ak
)T vec(AkSST −XkST )

vec(P Ak
S)T vec(P Ak

S)
, (14)

η∗S =
vec(P S)T vec(ĀT

ĀS − Ā
T
X̄)

vec(AkP S)T vec(AkP S)
(15)

are the adaptive steepest descent learning rates.

3. SIMULATION RESULTS

All the NMF algorithms discussed in this paper have been ex-
tensively tested for many difficult benchmarks for signals and
images with various statistical distributions and also for real
EEG data. We found the best performance can be obtained
with the AIPG, FPALS and the algorithm (8)-(9) for β = 1.

Due to space limitation, we present here only one sim-
ulation Example: Six natural highly correlated images are
mixed by randomly generated 3D tensor A ∈ R12×6×25

+ .
The observed mixed data are collected in 3D tensor X ∈
R12×642×25

+ . The exemplary results are shown in Fig.2.

4. CONCLUSIONS AND DISCUSSION

In this paper we proposed generalized and flexible cost func-
tions (controlled by a single parameter alpha or beta) that al-
lows us to derive a family of robust and efficient NTF algo-
rithms. The optimal choice of a free parameter of a specific
cost function depends on a statistical distribution of data and
additive noise, thus various criteria and algorithms (updating
rules) should be applied for estimating the basis matrices Ak

and the source matrix S, depending on a priori knowledge
about the statistics of noise or errors. It is worth to mention
that we can use three different strategies to estimate common
factors (the source matrix S). In the first approach, presented
in this paper, we use two different cost functions: A global
cost function (using unfolded column-wise matrices: X̄, S̄
for frontal slices of 3D tensors) to estimate the common fac-
tors S, i.e., the source matrix S; and local cost functions to
estimate the slices Ak, (k = 1, 2, ..., K). However, instead
of using the unfolding matrices for the NTF2 model, in or-
der to estimate S, we can use, average matrices defined as
X̄ =

∑
k Xk ∈ RI×T and Ā =

∑
k Ak ∈ RI×R. Fur-

thermore, it is also possible to apply a different approach by
using only set of local cost functions, e.g., Dk(Xk||AkS) =
0.5|Xk − AkS||2F . In such a case, we estimate Ak and
S cyclically by applying alternating minimization (similar
to row-action projection of the Kaczmarz algorithm). We
found that such approaches also work quite well for the NTF2
model. The advantage of the last approach is that the all up-
dates learning rules are local (slice by slice) and algorithms
are generally faster for large data, (especially, if K >> 1).

Obviously, 3D NTF models can be transformed to a 2D
non-negative matrix factorization (NMF) problem by unfold-
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Fig. 2. Example 1: (a) Observed mixed images (only sub-
set of the observed images are shown); (b) Estimated source
images using the FPALS algorithm (SIR = 20.8, 22.7, 21.5,
23.1, 20.4, 24.2 [dB], respectively).

ing (matricizing) tensors. However, it should be noted that
such a 2D model is not exactly equivalent to the NMF2 model,
since in practice we often need to impose different additional
constraints for each slice. In other words, the NTF2 model
should not be considered as equal to a standard 2-way NMF
of a single unfolded 2-D matrix. The profiles of the stacked
(column-wise unfolded) Ā are often not treated as single pro-
files and the constraints are usually applied independently to
each Ak sub-matrix that form the stacked Ā. Moreover, the
NTF2 is considered as a dynamical process, where the data
analysis is performed several times under different conditions
(multi-start initializations, multilayer or recurrent implemen-
tation, Monte Carlo analysis, selection of additional natural
constraints, etc.) to get full information about the available
data and/or discover some inner structures in the data.

We have been motivated to develop proposed NTF algo-

rithm by using them in three areas of data analysis (espe-
cially, EEG data) and signal/image processing: (i) multi-way
blind source separation, (ii) model reductions and selection
and (iii) sparse image coding. The proposed models can be
further extended by imposing additional, natural constraints
such as smoothness, continuity, closure, unimodality, local
rank, selectivity, and/or by taking into account a prior knowl-
edge about specific 3D, or more generally, multi-way data.
Obviously, there are many challenging open issues remain-
ing, such as global convergence, optimal choice of parameters
and uniqueness of a solution when additional constraints are
imposed.
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