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ABSTRACT
In this paper we present a kernel method for data clustering, where
the softk-means is carried out in a feature space, instead of input
data space, leading to soft kernelk-means. We also incorporate a
geodesic kernel into the soft kernelk-means, in order to take the
data manifold structure into account. The method is referred to as
soft geodesic kernelk-means. In contrast tok-means, our method is
able to identify clusters that are not linearly separable. In addition,
soft responsibilities as well as geodesic kernel, improve the cluster-
ing performance, compared to kernelk-means. Numerical experi-
ments with toy data sets and real-world data sets (UCI and document
clustering), confirm the useful behavior of the proposed method.

Index Terms— Pattern clustering methods, pattern classifica-
tion, unsupervised learning

1. INTRODUCTION

Clustering, the goal of which is to partition data points intoK co-
herent groups, plays an important role in a variety of areas such as
pattern recognition, machine learning, data mining, computer vision,
computational biology, and so on [1, 2].k-means is one of widely-
used clustering methods, where coherent clusters are identified in
such a way that the sum of within-cluster variations (in terms of Eu-
clidean distances) is minimized. Alternatively, it can also be inter-
preted as a minimization of the sum of squared pairwise intra-cluster
distances [3]. A major limitation ofk-means is that it cannot identify
clusters which are not linearly separable in input space.

Kernel method[4] is a technique to tackle nonlinearly separable
problems in an easy way, where the inner product between nonlinearly-
transformed variables is replaced by an appropriate positive definite
kernel (Mercer kernel) such that classification or clustering is car-
ried out implicitly in a feature space. Kernelk-means was recently
proposed [5] as an extension of the standardk-means algorithm, in
order to overcome the limitation ofk-means (mentioned above). It
was shown in [5] that kernelk-means is closely related to spectral
clustering and normalized cut.

Soft k-means is a slight variation ofk-means, where responsi-
bilities (degree to which a data pointxt is assigned to clusterk) are
determined in a soft manner through the softmax function, whereas
the standardk-means algorithm employs the hard decision (i.e., re-
sponsibilities are either 0 or 1). Although the minimum of thek-
means objective function will be achieved with the responsibilities
which are all either 0 or 1, the softk-means with stiffness term which
has an associated length scale improves the clustering performance,
compared to the standardk-means algorithm [6].

In this paper we present a kernelized version of softk-means,
referred to as ‘soft kernelk-means’, which is derived in the same

way as in kernelk-means. We also introduce ageodesic kernel
which well reflects the data manifold structure. We incorporate the
geodesic kernel into the soft kernelk-means algorithm, leading to
our proposed clustering algorithm, soft geodesic kernelk-means.
We show that the soft geodesic kernelk-means algorithm improves
the clustering performance, compared to kernelk-means as well as
soft kernelk-means with RBF kernel.

2. SOFT GEODESIC KERNEL K-MEANS ALGORITHM

We begin with revisiting the softk-means algorithm. Then, we illus-
trate how to kernelize it as well as how to incorporate the geodesic
kernel into the algorithm.

2.1. Softk-means

The softk-means method complements one of the main weak points
of the standard (hard)k-means: data points assigned to a cluster
have exactly the same degree of assignment without considering the
distance between each data point and the mean of the cluster [6].

Given a set of data points{xt}
N
t=1, the softk-means algorithm

aims at identifyingK disjoint clusters,{Sj}
K
j=1, by iterating the

following two steps [6]:

• Assignment step:Compute responsibility,Rjt ∈ [0, 1],

Rjt =
exp

˘
−β‖xt − µj‖

2
¯
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exp {−β‖xt − µi‖

2}
, (1)

that is the degree to whichxt is assigned to clusterSj , whose
mean vector is denoted byµj . The assignment step has one
parameterβ that is referred to as thestiffness. The responsi-
bility Rjt ranges over [0,1], whereas it is either 0 or 1 in the
standard (hard)k-means. Note that the sum of theK respon-
sibilities for each data pointxt is 1, i.e,

PK

j=1
Rjt = 1 for

t = 1, . . . , N .

• Update step: The model parameters, means vectors, are ad-
justed to match the sample means of the data points that they
are responsible for, i.e.,
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The softk-means algorithm can be derived from the minimiza-
tion of the following Lagrangian:
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where1/β is the Lagrange multiplier. As the stiffness parameter
β approaches∞, the entropy term disappears. In such a case, the
Lagrangian (3) becomes identical to the cost function for the stan-
dardk-means. The entropy term encourages the soft assignments by
spreading the responsibility of each data point uniformly as much as
possible.

2.2. Geodesic kernel

We consider a nonlinear transformφ(xt) which is a mapping from
input space to a feature space. We define a kernel matrixK =
[Kij ] ∈ R

N×N whereKij = φ⊤(xi)φ(xj). Then, in the fea-
ture space, the squared Euclidean distance fromφ(xt) to the best
representative mean vectorµj , is determined by the kernel without
explicit knowledge ofφ(xt) (kernel trick), i.e.,

‚‚φ(xt) − µj
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RjnRjlKnl, (4)

whereγj =
PN

l=1
Rjl. This relation provides a central trick in

developing the soft kernelk-means, which was also investigated in
the weighted kernelk-means [5]. The basic idea of the soft kernel
k-means algorithm is to evaluate responsibilities using the relation
(4) through a kernel matrixK .

Fig. 1 illustrates the (Dijkstra) geodesic distance on a neighbor-
hood graph. The geodesic distance well reflects the local structure,
which is expected to improve the clustering performance. Such a
geodesic distance was employed in a low-dimensional embedding
problem, which seeks an embedding with preserving neighborhood
relations. Isomap is one exemplary method [?, ?], which was further
elaborated in the framework of kernel methods [7, 8].

p̂

‖x − p‖g

x
‖x − p‖

p

Fig. 1. Euclidean distance between nodesx andp, ‖x − p‖, is de-
noted by a red-colored line. The Dijkstra geodesic distance is com-
puted along the shortest path betweenx andp.

We incorporate the geodesic kernel matrix used in our earlier
work [7, 8] into the current soft kernelk-means algorithm. The
geodesic kernel matrixK is constructed in the following way:

• Construct a neighborhood graph where edge weights between
only connected nodes (data points) are set as their Euclidean
distances.

• Compute geodesic distances,Dij , that are associated with the
sum of edge weights along shortest paths between all pairs of
points and defineD2 =

ˆ
D2

ij

˜
∈ R

N×N .

• Construct a matrixfK(D2) = − 1

2
HD2H , whereH is the

centering matrix given byH = I − 1

N
eNe⊤

N for eN =

[1 . . . 1]⊤ ∈ R
N .

• Compute the largest eigenvalue,c∗, of the matrix
"

0 2fK(D2)

−I −4fK(D)

#
. (5)

• The geodesic kernel matrix is of the form

K = fK(D2) + 2cfK(D) +
1

2
c2

H , (6)

whereK is guaranteed to be positive semidefinite (i.e., satis-
fies Mercer condition) forc ≥ c∗.

Algorithm outline: Soft geodesic kernelk-means

Step 1. (Initialization) Given the number of clusters,k, ini-
tialize clusters{Sj}

K
j=1 and responsibilitiesRjt randomly, and con-

struct the geodesic kernel matrix,K in (6).

Step 2. (Responsibilities)For each data pointxt (t = 1, 2, . . . , N ),
update responsibilitiesRjt (j = 1, . . . , K) by

Rjt =
exp

n
−β

‚‚φ(xt) − µj

‚‚2
o
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exp

˘
−β ‖φ(xt) − µi‖
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¯ , (7)

where
‚‚φ(xt) − µj

‚‚2

is computed using the relation in (4).

Step 3. (Update)Determine cluster indicesbjt associated with
xt by solving

bjt = arg max
j

Rjt, (8)

and update clusters by

Sj =
n

xt |bjt = j
o

, j = 1, . . . , K. (9)

Step 4. (Repetition)Repeat Steps 2 and 3, until the convergence
is achieved or the maximum number of iterations (pre-specified in
advance) is reached.

3. NUMERICAL EXPERIMENTS

In this section, we show the usefulness of the soft geodesic kernelk-
means algorithm, through the empirical comparison to the only soft
kernelk-means with RBF kernel. We applied our algorithm to some
artificial data sets, and carried out some experiments with real world
examples.

3.1. Experiment 1: Artificial data sets

We did numerical experiments with three different artificial data sets,
and compared with the different kinds of kernelk-means. Figs.
2 shows clustering results. The first data set is ‘Two moons’ data
where each moon consists of 104 and 96 data points, and the second
data set is ‘Three moons’ data has three classes of 100 data points
each. The last data set is ‘ICASSP’ log which has six groups where
each letter indicates one cluster. Each cluster has 35, 35, 56, 41, 53,
and 60 data points respectively. As we easily notice in Fig 2, these



Table 1. Results of clustering in terms of the classification accuracy (%, mean of each accuracy) according to a variety of parameter values
(kernel size and neighborhood size) are summarized about two methods (i.e., ours and the soft kernelk-means with RBF kernel function) (we
usedβ = 0.6, 0.03 and0.03 in each softmax function).

method\ neighborhood size 4 5 6 7 8 9 10 11 12

ours Two moons 100 100 100 100 100 100 100 94.792 92.188
Three moons 100 100 100 100 99.667 99.333 99.333 99.333 99.333
‘ICASSP’ logo 100 100 100 100 100 100 100 83.333 81.899

method\ kernel size 0.32 0.55 0.71 0.84 0.95 1.05 1.140 1.22 1.30

softk-means Two moons 100 75.321 73.397 72.917 71.955 70.994 70.994 70.994 70.994
with RBF kernel Three moons 78.000 81.000 89.333 99.667 95.667 96.000 96.333 97.667 90.333

‘ICASSP’ logo 50.804 82.858 93.642 78.625 58.908 67.072 71.715 71.715 59.048

problems cannot be clustered well using any density-based cluster-
ing algorithms. In addition, these data sets are composed of data
points which are close to the other data points in Euclidean space,
but these points are far away in geodesic space. Therefore, the use
of geodesic kernel instead of the other general kernel functions is
more reasonable in our approach.

(a)

(b)

(c)

Fig. 2. Clustering results for three data sets with oursoft geodesic
kernel k-means, is shown. Fortwo moons, three moonsdata cluster-
ing result are shown in (a) and (b) respectively. For‘ICASSP’ logo
data set, clustering result is shown in (c).

The soft kernelk-means with RBF kernel shows not bad cluster-
ing performances under certain parameter value as shown in Table 1.
However the selection of kernel size is very critical, it is hard to find
a kernel size for the desired clustering result.

Table 1 presents the clustering performances of two methods, ac-
cording to various kernel sizes and neighborhood sizes respectively,
which shows that our method has more stable results.

3.2. Experiment 2: Real-world data sets

In the first, as a real-world problem, we applied our soft geodesic
kernelk-means to the task of document clustering that has played an
important role in text information retrival. In here, we performed
some experiments with ‘20 newsgroup’1 data set which contains
about 20,000 articles (see Table 2).

We selected top 1000 words by ranking the values of mutual in-
formation between terms and documents. The tf.idf (term frequency-
inverse document frequency) scheme for term is used for construct-
ing term-document matrix,X = [x1, . . . , xn] ∈ R

n×d wherexi

indicates a document,n is the number of documents andd represents
the number of being selected terms. The distance measure between
two documents is defined as

Dist(xi, xj) = 1 −
x⊤

i xj

‖xi‖‖xj‖
. (10)

We focus on two data sets, each has three clusters. In the first ex-
periment (three groups, NG1/NG2/NG15), we chose 100, 125, and
140 articles randomly from NG1, NG2, and NG15 respectively. In
the second (three groups, NG2/NG10/NG18), we selected 100 arti-
cles randomly from each newsgroup. For each case, we preformed
10 independent experiments and its averaged results are summarized
in Table 3. The clustering performance was measured in terms of
classification accuracy, indicating how many documents were cor-
rectly classified.

In the second, we applied Iris and Wind data which are avail-
able from UCI Repository [10]. Iris data contain three groups of 50
instances each where each instance consists of 4 dimensional point.
Wine data are 13 dimensional points in three classes whose sizes are
59, 71, and 48 respectively. In the case of Wine data, after whiten-
ing all points to zero mean and unity variance due to the fact of its
heterogeneous attributes, we did our experiments. We preformed 10
independent experiments and its averaged results are summarized
too.

As shown in Table 3, our method shows some improvement over
the soft kernelk-means with RBF kernel. Moreover, all standard

1Dataset and the bow toolkit required to construct a term-document ma-
trix, are available online [9].



Table 2. 20 newsgroup data and their indexing.
NG1 alt.atheism NG11 rec.sport.hockey
NG2 comp.graphics NG12 sci.crypy
NG3 comp.os.ms-windows.misc NG13 sci.electronics
NG4 comp.sys.ibm.pc.hardware NG14 sci.med
NG5 comp.sys.mac.hardware NG15 sci.space
NG6 comp.windows.x NG16 soc.religion.christian
NG7 misc.forsale NG17 talk.politics.guns
NG8 rec.autos NG18 talk.politics.mideast
NG9 rec.motorcycles NG19 talk.politics.misc
NG10 rec.sport.baseball NG20 talk.religion.misc

Table 3. Results of document and UCI data sets clustering in terms of the classification accuracy (%) are summarized for two experiments
(we usedβ = 0.8, 0.8, 0.6 and0.03 in each softmax function). Values in parenthesis represent standard deviation.

method\ newsgroup NG1 NG2 NG15 Total (%)
ours (neighborhood size 45) 90.625 (± 2.872) 88.750 (±2.363) 76.071 (±6.133) 85.148 (±2.479)

softk-means with RBF kernel (kernel size 0.894)88.500 (±2.572) 88.266 (±6.579) 71.944 (±7.332) 82.903 (±4.635)
method\ newsgroup NG2 NG10 NG18 Total (%)

ours (neighborhood size 80) 92.375 (±3.292) 87.500 (±3.585) 91.375 (±2.199) 90.416 (±1.231)
softk-means with RBF kernel (kernel size 0.547)93.500 (±1.069) 83.375 (±4.033) 87.875 (±8.166) 88.250 (± 3.650)

method\ Iris data set class 1 class 2 class 3 Total (%)
ours (neighborhood size 26) 100.000 (±0.000) 82.000 (±0.000) 98.000 (±0.000) 93.333 (±0.000)

softk-means with RBF kernel (kernel size 0.948)100.000 (±0.000) 85.466 (±11.915) 85.200 (±12.393) 90.222 (±0.860)
method\ Wine data set class 1 class 2 class 3 Total (%)

ours (neighborhood size 28) 92.542 (± 3.591) 86.056 (±4.426) 96.250 (±1.914) 91.616 (±2.116)
softk-means with RBF kernel (kernel size 1.581)81.355 (±5.282) 75.176 (±6.856) 83.072 (±10.706) 79.868 (±6.334)

deviation values of the total performances in our method are smaller
than values of the counterpart method, which is due to the empirical
results of its all responsibilities are near either 0 or 1. That is, we
can notice that the performance of our method is more stable and
prominent.

4. CONCLUSIONS

We have presented a clustering method, “soft geodesic kernel k-
means”, where we kernerlized the softk-means algorithm, employ-
ing a geodesic kernel which reflected the data manifold. Useful as-
pects of our proposed clustering method could be summarized as
follows: (a) It is simple but the kernel trick and soft decision allows
us to identify non-convex clusters; (b) The geodesic kernel reflects a
data manifold structure, which improves the clustering performance.
Empirical comparison with soft kernelk-means with Gaussian ker-
nel (RBF kernel), confirmed the high performance of our method, in
the case of toy data sets as well as real-world problems.
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