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ABSTRACT

Nonnegative matrix factorization (NMF) is a widely-used method
for multivariate nonnegative data analysis, due to its ability to learn
a parts-based representation. However, the standard NMF algorithm
does not always find spatially localized basis images in practice, un-
less sparseness constraints are employed. In this paper we present a
method of structured initialization which enables the standard NMF
algorithm to find spatially localized basis images. The initialization
method is based on the hierarchical clustering of attributes through
a similarity measure reflecting ‘closeness to rank-one’. Numerical
experiments with face image data, confirm the validity of our initial-
ization method.

Index Terms— Feature extraction, matrix decomposition, pat-
tern clustering methods, pattern classification, unsupervised learning

1. INTRODUCTION

Nonnegative matrix factorization (NMF) is a popular method for
multivariate analysis of nonnegative data such as images, documents,
and spectrograms [1, 2, 3, 4]. Successful applications of NMF result
from its ability to learn a parts-based representation through a matrix
factorization,X = AS, whereX ∈ R

m×N is a data matrix which
consists ofN m-dimensional multivariate nonnegative data vectors,
A ∈ R

m×n is a basis matrix, andS ∈ R
n×N is an encoding vari-

able matrix. In contrast to principal component analysis (PCA) or
independent component analysis (ICA) which finds a holistic repre-
sentation, NMF was claimed to determine basis images that consist
of distinguishable parts of face [1]. This characteristics popularizes
NMF in pattern recognition and computer vision applications (for
example, face recognition). However, in practice, NMF often fails
to find a parts-based representation [5, 6], as shown in Fig. 1.

Fig. 1. Exemplary 20 basis images learned by NMF, from ORL face
images, are shown. These basis images are closer to holistic rep-
resentation, rather than parts-based representation, which is not a
desirable characteristics of NMF.

Recently, various methods for improving NMF have been devel-
oped, most of which involve adding constraints such as locality or
sparseness to the standard NMF error function [7, 5]. An exemplary
modification is the local NMF (LNMF) [5] where it was shown that
incorporating locality, orthogonality, and sparseness constraints, im-
proved NMF such that better spatially localized basis images could

be determined. However local NMF algorithms incorporating ad-
ditive constraints require much more iterations to achieve the con-
vergence, compared to the standard NMF algorithm.1 Our empirical
experience shows that LNMF takes at least 3 times more iterations to
achieve the convergence, compared to the standard NMF algorithm.

In this paper we propose an alternative way for improving NMF
to find localized basis images. Our approach is to initialize the stan-
dard NMF algorithm in such a way to find spatially localized basis
images, rather than incorporating extra constraints. We show that
our initialization method enables existing NMF algorithms to:

• find more localized basis images, compared to random initial-
ization;

• speed up the convergence of existing NMF algorithms;

• find LMNF-like basis images very quickly, compared to LNMF.

The main idea of our initialization is to group attributes (pixels in im-
ages) into parts through the hierarchical clustering with a similarity
measure reflecting ‘closeness to rank-one’. Earlier work on struc-
tured initialization for NMF was reported in [8], where the spherical
k-means clustering was employed to group data points (column vec-
tors ofX ), in order to improve NMF. In contrast, our initialization
is to group attributes (row vectors ofX ), placing an emphasis on a
parts-based representation.

2. THE INITIALIZATION METHOD

2.1. Grouping

Our initialization method is motivated by a common sense on ‘part’,
which is a smallest unit that has some perceptual meaning. For ex-
ample, a face image consists of various parts, including eyes, nose,
eyebrows, cheek, lip, and so on. Metaphorically, a pixel corresponds
to an atom and then, a part can be considered as a molecule. As
atoms in a molecule perform a chemical reaction together, pixels
that build a part should be grouped together. The main idea of our
initialization method is to group pixels that show the similar activity
patterns, by investigating pixel variations across the time.

In order to illustrate this idea, we consider an ideal case. Sup-
pose that the data matrixX is given by

[Xit] =

2
6664

1 0 0 2 3 0
2 0 0 4 6 0
0 1 1 2 4 2
3 0 0 6 9 0
1 0 0 3 4 0

3
7775 , (1)

where each row vector represents variations of a pixel across the
time. In this example, each image consists of 5 pixels and we have

1The standard NMF algorithm means Lee-Seung’s NMF algorithm in
their paper [1, 2].



6 images in total. One can easily see that pixels 1, 2, and 4 show
the same activity pattern, i.e., row vectors 1, 2, and 4 are linearly
dependent. This suggests a grouping of row vectors 1, 2, and 4. On
the other hand, pixels 1 and 3 can’t be grouped together, since their
activity patterns are different. With the same reason, pixels 1 and 5
are not grouped together. It follows from these intuitive observations
that we conclude:

• Pixels 1, 2, and 4 are grouped together as a part.

• The row vectorsX1,:, X2,:, X4,: are parallel to each other,
whereX i,: represents theith row vector in the matrixX .

• rank
`
X (1,2,4),:

´
= 1, whereX (1,2,4),: is a sub-matrix con-

sists of the row vectors 1, 2, and 4 ofX .

Following the observations in this simple example, we intro-
duce a ‘closeness to rank-one’ (CRO) measure in order to investigate
whether row vectors in the sub-matrix show similar patterns or not.
The CRO measure is defined by

CRO
`
X (i,j,...,k),:

´
=

σ2
1Pr

i=1 σ2
i

=
σ2

1

||X (i,j,...,k),:||2F
,

whereσ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0 are singular values of the sub-
matrixX (i,j,...,k),: andr is the rank ofX (i,j,...,k),:.

Before initializing the basis matrixA, we first group pixel pro-
files (corresponding to row vectors ofX ) through the hierarchical
clustering where CRO in (2) is used as the similarity measure. The
outline of the CRO-based hierarchical clustering algorithm is sum-
marized in Table 1.

Table 1. Algorithm outline: CRO-based hierarchical clustering.

Input: X ∈ R
m×N
+ .

Output:n clusters.
Step 1 (Initialization)
· Assign each row vectorX1,:, . . . , Xm,: into
each own clustersC1, . . . , Cm.
· Calculate CRO in (2) between every pairs of clusters.

RepeatSteps 2 and 3 untiln clusters remains.
Step 2 (Merging)
· Find a pair of clusters with the largest CRO.
· Merge them into a single cluster.
Step 3 (Updating CRO)
· Compute CRO between the newly-merged cluster
and remaining clusters.

In the case of the data matrixX given in (1), the CRO-based
hierarchical clustering algorithm provides a dendrogram shown in
Fig. 2. In such a case, taking 3 clusters, i.e.,n = 3, yields that row
vectors 1, 2, and 4 constitute a cluster and row vector 5 and 3 are
associated with each individual cluster, respectively. Following this
clustering result, the basis matrixA is initialized as

A =

2
6664

0.27 ǫ ǫ
0.53 ǫ ǫ

ǫ ǫ 1.00
0.80 ǫ ǫ

ǫ 1.00 ǫ

3
7775 , (2)

where column vectors are orthogonal each other, reflecting 3 distinc-
tive parts,ǫ is a small positive constant and the vector[0.27 0.53 0.80]⊤

is the largest left singular vector ofX (1,2,4),:. Some small positive
valueǫ > 0 is used instead of0 to prevent parameters from being
locked under NMF multiplicative update rules. More detailed expla-
nation, including the justification for using the left singular vector
[0.27 0.53 0.80]⊤, is given in Sec. 2.3.

Fig. 2. The dendrogram resulting from the CRO-based hierarchical
clustering, is shown in the case of the simple example where the data
matrix is given in (1).

2.2. Implementation

The CRO-based hierarchical clustering method heavily relies on sin-
gular value decomposition SVD, requiring the calculation of the largest
singular vector of a matrix which reflects two clusters in consider-
ation. In other words, every time the CRO between two clusters is
updated in Step 3 (in Table 1), an execution of SVD is required,
which demands high computational complexity. Here we present
an efficient implementation of the CRO-based hierarchical cluster-
ing method, where we introduce a method of merging two rank-one
approximations.

The sub-matrices considered in Step 3, are ‘fat’ matrices where
the number of columns are much greater than the number of rows.
Suppose that a sub-matrixX ∈ R

r×N (r ≪ N ) is given. The
largest singular vector of thisX can be calculated through applying
SVD toXX

⊤ ∈ R
r×r

XX
⊤ =

“
UΣV

⊤
” “

V Σ
⊤

U
⊤

”

= UΣV
⊤

V Σ
⊤

U
⊤

= UΣ
2
U

⊤, (3)

where the SVD ofX is UΣV
⊤. The V is obtained byV ⊤ =

Σ
−1

U
⊤

X . The size ofXX
⊤ is much smaller than the one ofX ,

which dramatically reduce the computational load in SVD. In fact,
this trick is known as thesnap-shot method.

The Step 1 in Table 1, requires the SVD of2 × N matrices in
order to calculate the CRO for every pairs of clusters. The snap-shot
method is applied to calculate the largest singular vector of each sub-
matrix.

The most serious bottleneck is in Step 3, where we need to calcu-
late the largest singular vector of sub-matrices associated with every
possible pairs of clusters. Instead of direct calculation of SVD of
the sub-matrix, we develop a method of merging two eigen-space
models, each of which is represented by rank-one approximation.
Suppose thatX1 ∈ R

m1×N andX2 ∈ R
m2×N are the matrices,

each of which is associated with a cluster that is determined in the
hierarchical clustering. The rank-one approximations of these ma-
trices are given byX1 ≈ σ1u1v

⊤
1 andX2 ≈ σ2u2v

⊤
2 , whereui

andvi are left and right singular vectors associated with the largest



singular value ofX i for i = 1, 2. The concatenated matrixX has
the following decomposition:

X =

»
X1

X2

–
≈

»
σ1u1v

⊤
1

σ2u2v
⊤
2

–

=

»
u1 0

0 u2

– »
σ1v

⊤
1

σ2v
⊤
2

–

= LR. (4)

The snap-shot method is applied toR ∈ R
2×N , in order to

determine the decompositionR = UΣV
⊤. Then we haveX ≈

eUΣV
⊤, where eU = LU . Then the rank-one approximation of

X is determined byX ≈ σeuv
⊤, whereu andv are left and right

singular vectors associated with the largest singular valueσ of R,
andeu = Lu.

Note thatX ≈ σeuv
⊤ is not the exact rank-one truncated SVD

of X , since the rank-one approximation is applied toLR, not di-
rectly toX . But approximation error is not big, so the accumulation
of errors never yields that a pair of clusters which is merged, is not
the one that is associated with the highest CRO measure.

2.3. Initialization

We illustrate how the basis matrixA ∈ R
m×n and encoding variable

matrix S ∈ R
n×N are initialized, using the CRO-based hierarchi-

cal clustering result. Suppose that given the nonnegative data ma-
trix X ∈ R

m×N , the CRO-based hierarchical clustering producesn
clusters,C1, . . . , Cn and their associated sub-matrix,X1, . . . , Xn,
where the associated sub-matrixXp = X (ip,jp,...,kp),: contains the
row vectors ofX that are grouped as the clusterCp. Each column
vector of A and row vector ofS are initialized according to the
rank-one approximation of the associated sub-matrix. There exists

a permutation matrixP such thatP X =
ˆ
X

⊤
1 , . . . , X⊤

n

˜⊤
. The

rank-one approximation of each sub-matrixXp, leads to

P X =

2
666666664

X1

X2

...
Xp

...
Xn

3
777777775

≈

2
666666664

σ1u1v
⊤
1

σ2u2v
⊤
2

...
σpupv

⊤
p

...
σnunv

⊤
n

3
777777775

(5)

=

2
666666664

u1 0 . . . 0 . . . 0

0 u2 . . . 0 . . . 0

...
...

...
...

0 0 . . . up . . . 0

...
...

...
...

0 0 . . . 0 . . . un

3
777777775

2
666666664

σ1v
⊤
1

σ2v
⊤
2

...
σpv

⊤
p

...
σnv

⊤
n

3
777777775

,(6)

which is (P A)S for initialization. Replacing zeros byǫ’s, thepth
column vector ofA and thepth row vector ofS are initialized as:

A(ip,jp,...,kp),p = up, (7)

A\(ip,jp,...,kp),p = ǫ, (8)

Sp,: = σpv
⊤
p , (9)

where\(ip, jp, . . . , kp) represents the rest of elements excluding
(ip, jp, . . . , kp) in thepth column vector ofA. The initialized ma-
trix A in (2) is an instance of (7) and (8). In our experiment, we used

ǫ ∈ [0.0005, 0.05]. The choice ofǫ, indeed, have influences on the
final result of the standard NMF. These influences are examined in
next section.

3. NUMERICAL EXPERIMENTS

We show the useful behavior of our initialization method, with two
face image datasets, comparing it to random initialization method.
Face image datasets used in numerical experiments are: (1) MIT
CBCL dataset [9]; (2) AT&T and Cambridge University, ORL dataset
[10]. In the case of CBCL dataset, the size of each face image is
19×19 and for ORL data set, each face image is resized by28×23.

We compare our initialization method to random initialization,
investigating how goodness-of-fit (GOF) and sparseness changes af-
ter the convergence of the standard NMF algorithm starting from two
different initialization methods. In experiments, we used LS NMF
algorithm, the updating rules of which are given in [2]. The GOF
used in experiments, is nothing but the relative reconstruction error
defined by GOF= ‖X − AS‖

F
/‖X‖

F
.

In regards to parts-based representation, we evaluate the sparse-
ness that was used in [7], defined by

sparseness(a) =
1√

m − 1

„√
m − ‖a‖1

‖a‖2

«
, a ∈ R

m. (10)

The sparseness measure (10) evaluates to 1 if and only ifa contains
only single nonzero component, and takes a value of 0 if and only if
all components are equal, interpolating smoothly between these two
extremes.

The initialization for the basis matrixA, involvesǫ-padding as
well as singular vectors regarding the CRO-based hierarchical clus-
tering. Certainly, values ofǫ have influences on GOF and sparseness.
In experiments, we used several different values ofǫ ∈ {0.05, 0.01,
0.005, 0.001, 0.0005}. We also investigated the performance, for
different values ofn (the number of basis vectors),n ∈ {25, 36,49,
64}. Evolutions of GOF and sparseness are shown in Fig. 3, where
experiments were carried out using random initialization and the
proposed initialization method with different choices ofǫ. In these
experiments, CBCL dataset was used, withn = 49. In case of ran-
dom initialization, the best performance was chosen among 10 inde-
pendent trials. We observed that

1. Our initialization method always produced more sparse rep-
resentation, compared to random initialization.

2. As increasingǫ from0.0005 to0.05, we lose sparseness while
gaining GOF.

3. Taking largeǫ yields slightly better goodness-of-fit, more sparse
representation, and faster convergence, compared to random
initialization. See Fig. 3 and Fig. 4.

4. Taking smallǫ with early stopping, yields LNMF-like result
in terms of goodness-of-fit as well as parts-based representa-
tion. See Fig. 3 and Fig. 5.

4. CONCLUSIONS

We have presented a method of initialization for existing NMF al-
gorithms, leading them to find more spatially localized parts-based
representation, compared to random initialization method. The core
idea of the initialization was to group attributes into clusters, each
of which might correspond to a part. The grouping was carried out
through the hierarchical clustering where we have introduced a sim-
ilarity measure, CRO, which reflects redundancy among vectors in
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Fig. 3. Evolutions of: (a) GOF; (b) sparseness, are shown in cases
of various values ofǫ in the proposed initialization, compared to
random initialization, with CBCL dataset.

(a) (b)

Fig. 4. Basis images of CBCL data are shown, determined by two
initialization methods: (a) random initialization; (b) the proposed
initialization method withǫ = 0.05.

terms of linear dependency. An efficient implementation was pre-
sented, where the CRO between clusters was calculated by merg-
ing two rank-one approximations. Numerical experiments have con-
firmed that the initialization method indeed found spatially localized
parts-based representations.
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(a) (b)

Fig. 5. Basis images of ORL data are shown, determined by (a)
LNMF (random initialization and 1500 iterations), GOF=20.67%,
sparseness=79.28%; (b) NMF (our initialization method withǫ =
0.0005 and 120 iterations), GOF=20.54%, sparseness=76.89%.
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