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Abstract. In this paper we present a face recognition method based on
multiway analysis of color face images, which is robust to varying illumi-
nation conditions. Illumination changes cause large variations on color
in face images. The main idea is to extract features with minimal color
variations but with retaining image spatial information. We construct a
tensor of color image ensemble, one of its coordinate reflects color mode,
and employ the higher-order SVD (a multiway extension of SVD) of
the tensor to extract such features. Numerical experiments show that
our method outperforms existing subspace analysis methods including
principal component analysis (PCA), generalized low rank approxima-
tion (GLRAM) and concurrent subspace analysis (CSA), in the task of
face recognition under varying illumination conditions. The superiority
is even more substantial in the case of small training sample size.

1 Introduction

Face recognition is a challenging pattern classification problem, which is encoun-
tered in many different areas such as biometrics, computer vision, and human
computer interaction (HCI). Cruxes in practical face recognition systems result
from varying illumination conditions, various facial expressions, pose variations,
and so on. Of particular interest in this paper is the case of varying illumination
conditions in color face image ensemble.

Various approaches and methods have been developed in face recognition.
Subspace analysis is one of the most popular techniques, demonstrating its suc-
cess in numerous visual recognition tasks such as face recognition, face detection
and tracking. Exemplary subspace analysis methods include singular value de-
composition (SVD), principal component analysis (PCA), independent compo-
nent analysis (ICA), nonnegative matrix factorization (NMF), and Fisher linear
discriminant analysis (LDA). All these methods seek a linear representation of
face image ensemble such that basis images and encoding variables are learned,
satisfying a certain fitting criterion with each face image represented by a vector.

Face images are formed by the interaction of multiple factors related to illu-
minations, color information, various poses, facial expressions, identities. Portion
of such information are embedded in 2D spatial structure. Thus, face images,



intrinsically fit in multiway representation, known as tensor, reflecting various
interactions between different modes. However, aforementioned subspace analy-
sis methods are confined to at most 2-way representation. For example, color face
images are converted to gray scale-valued vectors. This vectorization is a typical
pre-processing in conventional subspace methods. It leads to high-dimensional
vectors with losing some spatial structure, which results in a curse of dimen-
sionality problem, making such methods to suffer from the small sample size
problem.

Recently, there are a great deal of studies on multiway analysis in com-
puter vision. These include 2D-PCA [1], generalized low rank approximation
(GLRAM) [2], concurrent subspace analysis (CSA) [3], tensor faces [4] which
employs the multilinear SVD (a.k.a HOSVD) [5, 6], and multilinear ICA [7].
The basic idea of tensor analysis goes back to Tucker decomposition [8, 9]. See
[10] for a recent review of tensor factorization.

In the case of color face images, illumination change yields large variations
on color in face images, even through they have exactly the same pose and facial
expression. In this paper, we present a tensor factorization-based method for
illumination-robust feature extraction in a task of color face image recognition.
The method is referred to as color face tensor factorization and slicing (CFTFS).
We form a 4-way tensor whose coordinates are associated with rows and columns
of face images, color, and samples. The CFTFS employs the multilinear SVD
in the 4-way tensor, simultaneously analyzing subspaces corresponding to rows,
columns, and color. Then it chooses slices where the information about variations
on row and column modes remain but variations on color mode are minimized.
We demonstrate that CFTFS outperforms existing methods, including PCA,
GLRAM, and CSA. The useful behavior of the method becomes more substan-
tial, especially in the case of small training sample size.

The rest of this paper is organized as follows. In the next section we de-
scribe a brief overview of tensor algebra and Tucker decomposition. The pro-
posed method, CFTFS is presented in Sec. 3. In Sec. 4, numerical experimental
results are presented, showing that CFTFS is an indeed effective method for
illumination-robust face recognition. Finally conclusions are drawn in Sec. 5.

2 Background: Multiway analysis

2.1 Tensor algebra

A tensor is a multiway array of data. For example, a vector is 1-way tensor and
a matrix is 2-way tensor. The N -way tensor X ∈ R

I1×I2×···×IN has N indices
(i1, i2, . . . , iN ) and its elements are denoted by xi1i2...iN

where 1 ≤ in ≤ In.
Mode-n vectors of an N -way tensor X are In-dimensional vectors obtained from
X by varying index in while keeping the other indices fixed. In matrix, column
vectors are referred to as mode-1 vectors and row vectors correspond to mode-2
vectors.

The mode-n vectors are column vectors of the matrix X(n) which is the
mode-n matricization (matrix unfolding) of the tensor X . The mode-n matriciza-



tion of X ∈ R
I1×I2×···×IN is denoted X(n) ∈ R

In×In+1In+2···IN I1I2···In−1 where
In+1In+2 · · · INI1I2 · · · In−1 is the cyclic order after n. The original index in+1

runs fastest and in−1 slowest in the columns of the matrix X(n). Pictorial illus-
tration of the mode-n matricization of a 3-way tensor is shown in Fig. 1.
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Fig. 1. Matricization of a 3-way tensor X ∈ R
I1×I2×I3 leads to X (1) ∈ R

I1×I2Id ,
X (2) ∈ R

I2×I3I1 , and X (3) ∈ R
I3×I1I2 which are constructed by the concatenation of

frontal, horizontal, vertical slices, respectively.

The scalar product of two tensors X ,Y ∈ R
I1×I2×···×IN is defined as 〈X ,Y〉 =

∑

i1,i2,...,iN
xi1i2···iN

yi1i2···iN
. The Frobenius norm of a tensor X is given by

‖X‖ =
√

〈X ,X 〉.

The mode-n product of a tensor S ∈ R
J1×J2×···×Jn×···×JN by a matrix A

(n) ∈
R

In×Jn is defined by

[

S ×n A
(n)

]

j1···jn−1injn+1···jN

=

Jn
∑

jn=1

sj1...jn−1jnjn+1···jN
ainjn

, (1)



leading to a tensor S×n A
(n) ∈ R

J1×J2×···×In×···×JN . With the mode-n product,
a familiar matrix factorization X = USV

⊤ is written as X = S ×1 U ×2 V in
the tensor framework.

2.2 Tucker decomposition

The Tucker decomposition seeks a factorization model of an N -way tensor X ∈
R

I1×I2×···×IN as mode products of a core tensor S ∈ R
J1×J2×···×JN and N mode

matrices A
(n) ∈ R

In×Jn ,

X ≈ S ×1 A
(1) ×2 A

(2) · · · ×N A
(N) (2)

xi1i2···iN
≈

∑

j1,j2,...,jN

sj1j2···jN
a
(1)
i1j1

a
(2)
i2j2
· · · a

(N)
iN jN

. (3)

Usually, mode matrices are constrained to orthogonal for an easy interpretation
and there is no loss of fit. The pictorial illustration of the Tucker decomposition
is shown in Fig. 2.
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Fig. 2. The 3-way Tucker decomposition.

In Tucker decomposition, all modes don’t need to be analyzed. If mode-n is
not analyzed, then associated component matrix A

(n) becomes In × In identity
matrix IIn

. Now, we introduce new terminology ‘N-way Tucker M decomposi-
tion’ where N-way means we incorporate N-way tensor and M is the number of
analyzed modes. This new terminology explains PCA, 2D-PCA, GLRAM, CSA,
and HOSVD in general framework. Table. 1 summarizes each method using this
new terminology in the case of general multiway data and face image ensemble.

Suppose that Ω is the set of analyzed modes. If all mode matrices are or-
thogonal, minimizing least square discrepancy between the data and model in
Eq. (2) is equivalent to maximizing the function:

G(A(1),A(2), . . . ,A(N)) = ‖X ×1 A
(1)⊤ ×2 A

(2)⊤ · · · ×N A
(N)⊤‖2, (4)

over A
(n) for all n ∈ Ω. In the Tucker decomposition, Eq. (4) has no closed form

solution, except for PCA, so local solution is found iteratively with Alternative



Data type Method Tucker decomposition Remark

PCA N -way Tucker 1 A
(n) = IIn

for n ∈ {1, . . . , N − 1}

N -way tensor CSA N -way Tucker N − 1 A
(N) = IIN

HOSVD N -way Tucker N Jn ≤ In for all n

PCA 3-way Tucker 1 A
(1) = II1

, A(2) = II2

Face image 2D-PCA 3-way Tucker 1 A
(1) = II1

, A(3) = II3

ensemble GLRAM 3-way Tucker 2 A
(3) = II3

CSA 4-way Tucker 3 A
(4) = II4

Table 1. Tucker decomposition explains PCA, 2D-PCA, GLRAM, CSA, and HOSVD
in general framework. Assume the last mode is associated with samples. The grayscale
face image ensemble constructs the 3-way tensor(rows, columns, samples) and color
face image ensemble does the 4-way tensor(rows, columns, color, samples).

Least Squares(ALS). In each step, only one of the component matrix is opti-

mized, while keep others fixed. Suppose n ∈ Ω and A
(1), . . . ,A(n−1),A(n+1), . . . ,

A
(N) are fixed. Then Eq. (4) is reduced to a quadratic expression of A

(n),

consisting of orthonormal columns. We have G(A(n)) = ‖K(n) ×n A
(n)⊤‖2 =

‖A(n)⊤
K(n)‖

2, where

K
(n) = X ×1 A

(1)⊤ · · · ×n−1 A
(n−1)⊤ ×n+1 A

(n+1)⊤ · · · ×N A
N⊤, (5)

and K(n) is the mode-n matricization of K
(n). Hence the columns of A

(n) can
be found as an orthonormal basis for the dominant subspace of the column space
of K(n). The resulting algorithm is presented in Table 2.

3 Color Face Tensor Factorization and Slicing

In the case of color face images, illumination change yields large variations on
color in face images, even through they have exactly the same pose and facial
expression. Conventional methods, such as PCA and GLRAM, convert color
image into grayscale image and then reduced the dimension. As the illumination
changes, the intensity value also varies extremely. However there is no way to
reduce this fluctuation in garyscale image based method, since they already
thrown away the information on color. If there are large illumination changes
but only small number of samples are available, then these methods can’t prevent
a sharp decline on face recognition performance. Our propose method, color face

tensor factorization and slicing (CFTFS), solves these problem by conserving the
color information and the spatial structure of original color face image ensemble.

With the help of multiway analysis, the CFTFS simultaneously analyzes the
subspace of rows, columns, and color. Then CFTFS slices a feature tensor where
information about variations on rows and columns modes are retained but on
color mode are minimized. Basic idea of CFTFS is illustrated in Fig. 3.



Table 2. ALS algorithm for Tucker decomposition.

Input: X , Ω, Jn for all n ∈ Ω.

Output: S, A
(n) for all n ∈ {1, 2, . . . , N}.

1. Initialize

· A(n) ← IIn
for all n /∈ Ω.

· A(n) ← SVDS(X (n), Jn) for all n ∈ Ω.

· S ← X ×1 A
(1)⊤ ×2 A

(2)⊤ · · · ×N A
(N)⊤.

2. Repeat until converges

for all n ∈ Ω

· K(n) ← X ×1 A
(1)⊤ · · · ×n−1 A

(n−1)⊤ ×n+1 A
(n+1)⊤ · · · ×N A

N⊤.

· K(n) ← mode-n matricization of K(n).

· A(n) ← SVDS(K(n), Jn).

3. S ← X ×1 A
(1)⊤ ×2 A

(2)⊤ · · · ×N A
(N)⊤.

CFTFS uses the 4-way tensor X in which (I1, I2) is the size of face image,
I3 = 3 is the number of color coordinates(RGB), and I4 is the number samples.
The face image data is centered so that it has zero mean:

X :,:,:,i4 ← X :,:,:,i4 −M for all 1 ≤ i4 ≤ I4, (6)

where M = 1
I4

∑I4

i4
X :,:,:,i4 .

As its name hinted, CFTFS consists two stage: dimension reduction and
slicing. At dimension reduction stage, it play the 4-way Tucker 3 decomposition,
where mode-4 is not analyzed and J1 < I1, J2 < I2, and J3 = I3 = 3. In fact, it
is equivalent to CSA which minimizes

I4
∑

i4=1

‖X :,:,:,i4 − S:,:,:,i4 ×1 A
(1) ×2 A

(2) ×3 A
(3)‖2 (7)

over A
(1),A(2),A(3), and S :,:,:,i4 for all 1 ≤ i4 ≤ I4. The color face tensor X :,:,:,i4

is projected to an intermediate feature tensor S :,:,:,i4 = X :,:,:,i4 ×1 A
(1)⊤ ×2

A
(2)⊤×3 A

(3)⊤. Hence the dimension is reduced from I1× I2× 3 to J1× J2× 3.
Since we use SVDS in our algorithm, the first columns in mode matrices

represent the most dominant subspace, the second columns do the second most
subspace orthogonal to the first one, and so on. Thus the third slice S :,:,3,i4 of
an intermediate feature tensor is a final illumination-robust feature matrix. In
the final feature matrix, information of X :,:,:,i4 about variations on rows and
columns are retained but on color are minimized.

The illumination-robust feature extraction for a test color face tensor Y ∈
R

I1×I2×3 is summarized to

T = (Y −M)×1 A
(1)⊤ ×2 A

(1)⊤ ×3 a
(3)⊤
3 , (8)

where a
(3)
3 is the third column vector of A

(3).
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Fig. 3. CFTFS finds a transformation which reduces the size of image and minimizes
the variation on color.

4 Numerical Experiments

Our MATLAB implementation of the CFTFS partly uses the tensor toolbox
[11]. We show the effectiveness of our proposed method for the illumination-
robust face recognition, with CMU PIE face database [12], comparing it PCA,
GLRAM, and CSA. CMU PIE database contains 41,368 face images of 68 peo-
ples. In our experiment, we use the sub-database contains 1,632 face images. It
has 24 varying illumination condition with exactly same pose(C27) and facial
expression(neutral) for each person. We fix the location of the two eyes, crop the
face, and resize to 30× 30 pixel. Sample face images are shown in Fig. 4.

Fig. 4. Sample face images are shown. Illumination change yields large variations on
color in face images, even through they have exactly the same pose and facial expres-
sion.

Fig. 5 and Table. 3 show the recognition result for 4 methods. The (x, y, z)
axis represent the number of features, training sample ratio, and recognition
accuracy. The number of features are {9, 16, 25, 36, 49, 64} and training sample
ratio are {0.1, 0.2, . . . , 0.9}. The experiments are carried out 20 times indepen-
dently for each case and the mean accuracy are used.
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Fig. 5. From top to bottom, face recognition accuracy of CFTFS, PCA, GLRAM, and
CSA. CFTFS has the highest accuracy and robust to lack of training samples.

It is known that GLRAM and CSA are has more image compression ability
than PCA. However, our experiment results show that they are not suitable
for the face recognition under varying illumination conditions. Especially, CSA
shows the poorest result since it captures the feature where dominant variations
on color remain. The slicing, difference between CFTFS and CSA, dramatically
increases the recognition performance. As Fig. 5 and Table. 3 show, CFTFS has
the higher recognition accuracy than others in the most of the time. Moreover
superiority of our methods becomes more substantial, especially in the case of
small training sample size.

5 Conclusions

In this paper, we have presented a method of color face tensor factorization

and slicing which extracts an illumination-robust feature. Revisiting the Tucker
decomposition, we have explained our algorithm in general framework with PCA,
2D PCA, GLRAM, CSA, and HOSVD. Using the 4-way Tucker 3 decomposition,
subspaces of rows, columns, and color are simultaneously analyzed and then
feature, in which information about variations on rows and columns are retained
but on color are minimized, is extracted by slicing. Numerical experiments have
confirmed that our method indeed effective for face recognition under a condition
in which a large illumination change exists and only small number of training
samples are available.
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# of training sample ratio(%)

features 10 20 30 40 50 60 70 80 90

9 36.67 50.85 61.27 68.04 74.75 78.74 83.06 85.32 88.19

16 45.32 63.63 73.45 80.81 85.63 89.81 93.01 95.54 97.45

CFTFS 25 52.99 70.82 80.50 86.46 90.88 94.19 96.56 98.10 99.14

36 54.62 72.90 82.42 87.87 91.84 95.17 97.03 98.51 99.69

49 58.45 75.62 85.07 90.20 93.67 95.97 97.43 99.13 99.63

64 61.41 78.12 85.80 90.74 93.79 95.58 97.75 99.23 99.45

9 21.37 35.31 46.41 55.95 64.27 71.62 78.59 84.22 89.85

16 26.44 41.71 54.17 65.26 74.04 80.54 87.89 91.89 96.93

PCA 25 30.14 47.25 59.86 70.21 78.52 85.65 90.48 94.43 97.73

36 32.10 50.62 63.77 73.47 81.42 87.89 92.63 96.12 98.50

49 34.06 52.32 65.92 76.39 84.32 90.12 93.99 97.70 98.99

64 34.72 54.47 67.35 78.28 85.28 90.38 94.49 97.58 99.60

9 16.74 28.44 38.18 46.97 54.76 61.10 67.46 72.42 78.90

16 19.68 32.87 44.53 54.93 63.31 70.74 79.06 84.46 91.44

GLRAM 25 22.76 37.89 50.01 60.25 69.30 78.08 84.58 90.05 95.09

36 24.38 40.69 53.62 63.68 72.94 80.82 87.02 92.67 96.84

49 26.65 43.19 55.74 67.46 76.53 84.03 89.67 94.54 97.30

64 27.90 45.50 58.09 69.45 78.13 84.62 90.49 95.38 98.83

9 16.74 28.44 38.18 46.97 54.76 61.10 67.46 72.42 78.90

16 19.68 32.87 44.53 54.93 63.31 70.74 79.06 84.46 91.44

CSA 25 22.72 37.99 49.67 60.59 68.82 77.02 84.06 90.37 95.06

36 20.85 34.78 46.62 57.43 66.02 73.84 80.92 87.16 92.55

49 18.34 31.11 41.50 51.35 59.67 67.19 74.55 79.57 86.53

64 15.59 26.33 34.61 42.67 49.14 56.00 60.76 66.53 69.63

Table 3. Recognition accuracy over various number of features and training sample
ratio. CFTFS has the higher recognition accuracy than others in the most of the time.
Moreover superiority becomes more substantial, especially in the case of small training
sample size.


