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Abstract

Neighbor search is a fundamental task in
machine learning, especially in classification
and retrieval. Efficient nearest neighbor
search methods have been widely studied,
with their emphasis on data structures but
most of them did not consider the underly-
ing global geometry of a data set. Recent
graph-based semi-supervised learning meth-
ods capture the global geometry, but suffer
from scalability and parameter tuning prob-
lems. In this paper we present a (near-
est) neighbor search method where the un-
derlying global geometry is incorporated and
the parameter tuning is not required. To
this end, we introduce deterministic walks as
a deterministic counterpart of Markov ran-
dom walks, leading us to use the minimax
distance as a global dissimilarity measure.
Then we develop a message passing algo-
rithm for efficient minimax distance calcula-
tion, which scales linearly in both time and
space. Empirical study reveals the useful be-
havior of the method in image retrieval and
semi-supervised learning.

1. Introduction

The k-nearest neighbor (k-NN) algorithm is a simple
but widely-used method for classification and retrieval.
The task is to find k nearest neighbors (in a database)
of a query using (Euclidean) distance measure. In the
case of retrieval, such neighbors themselves are the
solution. For classification, the class label of the query
is assigned as a label corresponding to the majority in
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Figure 1. Two different classes are distinguished by (red)
circles and (blue) crosses. In (a) and (b), black star-shape
object is a query. Nearest neighbors are the points within
big (green) circles. Some of them are irrelevant data points
which should not be selected for successful retrieval. In (c),
black dots are unlabeled points. k-NN yields an erroneous
decision boundary shown as the (green) line, unless unla-
beled data points are considered in learning.

k neighbors found. In most cases, Euclidean distance
is used, which does not reflect the underlying global
geometry (data manifold) of the database.

Fig. 1 illustrates some drawbacks of the k-nearest
neighbor algorithm. Nearest neighbors of a query lo-
cated near the boundary between two different clusters
include irrelevant data points that degrade the perfor-
mance of classification as well as retrieval. Fig. 1 (c)
emphasizes the role of unlabeled data points, which is
not taken into account in the k-NN algorithm. Simple
examples in Fig. 1 emphasize the underlying global
geometry of a data set as well as the role of unlabeled
data points, which should be considered in neighbor
search for semi-supervised learning and retrieval.

Various methods for metric learning have been pro-
posed for capturing the underlying global geometry.
Domeniconi et al. (2002) proposed locally linear met-
ric learning for k-NN, but it cannot utilize unlabeled
data points. Xing et al. (2003) proposed Maha-
lanobis metric learning with pairwise constraints. This
method works well with partially labeled data sets,
but cannot handle the nonlinear manifold structure.
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Chang and Yeung (2004) proposed locally linear met-
ric learning with pairwise constraints. While it works
with partially labeled data and takes a nonlinear man-
ifold structure into account, its time complexity is very
high, due to a quadratic optimization involved in every
iteration of the algorithm.

Manifold learning (Tenenbaum et al., 2000; Roweis &
Saul, 2000; Belkin & Niyogi, 2003) is a method of find-
ing meaningful low-dimensional structure embedded in
their high-dimensional observations. These methods
capture the underlying global geometry, but their use
is limited in an embedding problem. The manifold reg-
ularization (Belkin & Niyogi, 2004) initiated various
graph-based semi-supervised learning methods (Zhou
et al., 2004; Zhu et al., 2003; Wang & Zhang, 2006).
These methods handle partially labeled classification
as well as the global geometry. However, their scal-
ability is rather poor, since the computation requires
O(N3) in time and O(N2) in space, where N is the
number of elements in a database. In addition, they
involve kernel parameter tuning for a proper weighted
adjacency matrix. The tolerable performance is guar-
anteed only in a very narrow range of the values of the
parameters (Wang & Zhang, 2006).

In this paper, we present an efficient neighbor search
method that is useful in semi-supervised learning and
retrieval. The proposed method exploits the underly-
ing global geometry of a partially labeled data set, and
improves the scalability compared to existing graph-
based semi-supervised learning methods. We intro-
duce deterministic walks that can be viewed as a de-
terministic counterpart of Markov random walks. In
this framework, we can consider the minimax distance
as a global dissimilarity measure, which is easily com-
puted on minimum spanning trees. We then develop
a message passing algorithm that scales with O(N) in
time and in space. In addition, our method is free
from kernel parameters whose proper values should
be determined in most of graph-based semi-supervised
learning methods.

2. Markov Random Walks and

Semi-Supervised Learning

We review graph-based semi-supervised learning (SSL)
in the perspective of neighborhood selection. SSL is
often illustrated in the framework of Markov random
walks (Szummer & Jaakkola, 2002; Zhou & Schölkopf,
2004), the key idea of which is in the transitive closure
of closeness relationship: “My neighbor’s neighbor can
be also my neighbor.”

Given a data set X = {x1, · · · ,xN}, the base similar-

ity wij between xi and xj , is computed as

wij = exp

{
−

1

2σ2
||xi − xj ||

2

}
, (1)

where σ > 0 is a kernel width parameter. The transi-
tion matrix P is then constructed by normalizing the
base similarity, i.e., [P ]ij = pij = wij/

∑
k wik.

Markov random walks implement the transitive rela-
tionship in this way: An element xj is selected as a
neighbor of xi with the probability αt, if a random
walk sequence starting at xi visits the place xj at time
t. The discounting factor 0 < α < 1 makes xj having
a less opportunity for being selected if the relationship
is longer. Then, the selection probability is the sum of
the probabilities of selecting at time t = 1, 2, 3, · · · .

It is well known that the tth power of P contains t-
step transition probabilities, where [P t]ij represents
the probability that a random walk starting at xi vis-
its xj at the tth transition. Thus, the neighborhood
selection probability is given by1

P̂ = (1 − α)(I − αP )−1. (2)

Clearly, [P̂ ]ij can be viewed as the global similarity
measure between xi and xj . There are several variants
of Eq. (2) in semi-supervised learning (Zhou et al.,
2004; Zhu et al., 2003).

One problem of SSL is scalability: Computing Eq. (2)

takes O(N3) time, and storing P̂ or P takes O(N2)
space. For classification, one can solve a linear system
(I − αP )f = y rather than Eq. (2) so that reduce
the time cost to O(N2) for a sparse P (e.g. k neigh-
borhood graph).2 However, it is still not practical for
large scale problems.

Garcke and Griebel (2005) proposed a grid-based ap-
proximation technique which takes O(N) time for a
sparse P . However, it can handle only a low dimen-
sional data set since the number of required grid points
are exponential with respect to the data dimension.

Delalleau et al. (2005) proposed an approximation by
constructing a smaller graph from a subset of a data
set. It takes O(M2N) time and O(M2) space, where
M is the size of the subset. While efficient, it can be
used only for classification. Zhu and Lafferty (2005)
proposed a similar approach that reduces the original
graph into a much smaller backbone graph.

1Note that (I − αP )−1 = I + αP + α2P 2 + · · · . Note

also that (1− α) makes the row sum of P̂ be 1.
2Recently, Spielman and Teng (2004) proposed an ap-

proximation algorithm to solve a sparse linear system in
O(N logc N) time for a constant c.
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3. Deterministic Walks

In this section, we introduce a deterministic counter-
part of Markov random walks, which is referred to as
deterministic walks where the global similarity (2) is
replaced by the minimax distance that can be easily
computed on minimum spanning trees. The determin-
ism is illustrated in Sec. 3.1, followed by the minimax
distance in Sec. 3.2.

3.1. From randomness to determinism

We first slightly modify the transitive closeness rela-
tionship mentioned in Sec. 2 as:

“My neighbor’s neighbor is also my neighbor.”

The word ‘can be’, reflecting randomness, is replaced
by the word ‘is’, meaning determinism. The behav-
ior of a random walk is characterized by a transition
matrix P . In contrast, a deterministic walk is charac-
terized by an adjacency matrix with a given ǫ:

[Aǫ]ij =

{
1 if dij ≤ ǫ,
0 otherwise,

(3)

where dij is the Euclidean distance between xi and xj .
In deterministic walks, any two elements are neighbors
with the probability 1, if there is a path (i.e. transitive
relationship) between them for a given Aǫ.

We give an illustrative example. Let a movement from
xi to xj be allowed only if dij ≤ ǫ for a threshold ǫ > 0.
Then xi and xk are neighbors by transitive relation-
ship, if there are one or more sequences of the allowed
movements between them. For instance, consider a
sequence P = (x0,x1, · · · ,xt) where xp represents a
point visited at the pth movement in P. If every Eu-
clidean distance dp,p+1 associated with a hop between
xp and xp+1 is less than ǫ for p = 0, . . . , t − 1, then
x0 and xt are neighbors of each other. Moreover, all
the points xp on such a path are also neighbors by the
transitive closeness relationship.

There exist many possible sequences of points between
xi and xj . For example, P1

ij = (xi,xj), P2
ij =

(xi,x1,x5,xj), P3
ij = (xi,x4,xj), and so on. How-

ever, most of them may include forbidden movements.
Let a sequence be referred to be valid if all internal
hops on the sequence do not exceed ǫ. More precisely,
Pk

ij (where the superscript k is an index to enumerate
all possible sequences between xi and xj) is valid if
dp,p+1 ≤ ǫ for all hops (xp,xp+1) ⊂ Pk

ij . It means

that the sequence Pk
ij can be actually generated by a

deterministic walk under the adjacency matrix Aǫ, so
that xi, xj , and all the points in Pk

ij are neighboring
points by transitive closeness relationship.

x
1 x

2

x
3

Manifold 1

Manifold 2

Small dij

Large dij

Figure 2. Without considering the global geometry, x2 pre-
fer to choose x3 to x1 as its neighbor. In contrast, our
deterministic walk select x1 as a neighbor of x2, given a
proper value of ǫ.

A proper value of ǫ prevents a deterministic walk from
going out to the other manifolds. In Fig. 2, there is a
sequence of the walks from x2 to x1 (i.e. moving in the
same manifold) where the distance of each movement
is sufficiently small. On the other hand, moving from
x2 to x3 (i.e. moving from one manifold to another)
requires at least one “great leap”. Thus a deterministic
walk under Aǫ, where ǫ is less than such great leaps,
visits only the elements in the same manifold since all
possible Pk

2,3 are invalid under the value of ǫ.

3.2. Minimax distance

Denote by dk
Pij

the maximum hop distance in Pk
ij , i.e.,

dk
Pij

= max(xp,xp+1)⊂Pk
ij

dp,p+1. Then, Pk
ij is valid if

dk
Pij

≤ ǫ. Two points xi and xj are neighbors if there
exists at least one valid path between them. In other
words, they are neighbors if mink dk

Pij
≤ ǫ. We define

the minimax distance ǫij for a pair xi,xj as

ǫij = min
k

dk
Pij

= min
Pk

ij

{
max

(xp,xp+1)⊂Pk
ij

dp,p+1

}
, (4)

which is the minimum value that guarantees at least
one valid path between xi and xj . Corresponding path
is referred to as minimax path.

As shown in Fig. 2, the minimax distance ǫij tends to
be small if xi and xj lie on the same manifold. Thus,
the minimax distance can be viewed as a dissimilar-
ity measure which incorporates the underlying global
geometry of a data set.

The computation of ǫij seems to be intractable, since
there exists many possible sequences of nodes between
xi and xj . However, it is well known that a minimum
spanning tree (MST) is also a minimax spanning tree
(Carroll, 1995). Every path in an MST is also a min-
imax path, suggesting that ǫij is easily computed in
the MST:

ǫij = max
(xp,xp+1)⊂Pij

dp,p+1. (5)
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4. Message Passing

We are given a database X = {xi}
N
i=1 and a query x∗.

The goal is to compute minimax distances {ǫ∗i} for
i = 1, . . . , N . A naive way is to construct the MST of
X ∪ {x∗} to calculate ǫ∗i by (5). It requires O(N2)
complexity in time in constructing the MST. Here we
present an efficient way to compute ǫ∗i, which scales
with O(N) in time.

4.1. The minimax message passing algorithm

It is desirable to use the MST of X (that is al-
ready found using the database), instead of construct-
ing a new MST of X ∪ {x∗}. Note that in a se-
quence (x∗, · · · ,xi), paths that should be consid-
ered to calculate ǫ∗i, belong to one of the following
N different paths: (x∗,x1, · · · ,xi), (x∗,x2, · · · ,xi),
. . ., (x∗,xN , · · · ,xi). Note also that a path
(x∗,xj , · · · ,xi) includes a subsequence (xj , · · · ,xi)
where ǫji is easily computed on the MST of X . There-
fore, we compute ǫ∗i as

ǫ∗i = min
j

(max(d∗j , ǫji))

= min

(
d∗i,min

j 6=i
(max(d∗j , ǫji))

)
, (6)

where d∗i is the Euclidean distance between x∗ and
xi. Note that max(d∗i, ǫii) is simply d∗i.

Computing Eq. (6) takes O(N) time for each i. To be
more efficient, we present a message passing algorithm
which is similar to the sum-product algorithm (Kschis-
chang et al., 2001). Let TX be the MST of the given
database X . Denote by Ni a set of indices such that
j ∈ Ni if there is an edge between xi and xj in TX .

We also define N
\j

i = Ni − {j}. Then ǫ∗i is efficiently
computed on TX by the following minimax message
passing algorithm:

mij = max

(
dij ,min

(
d∗i, min

k∈N
\j

i

mki

))
, (7)

ǫ∗i = min

(
d∗i, min

k∈Ni

mki

)
. (8)

During the process of message passing, each node is
visited two times: At the first visit to node i, all mes-
sages mki are given from node k ∈ Ni except for one
node referred to node j. Thus only mij can be com-
puted at this time. It is called forward passing. At the
second visit, mji is also given so that all mik can be
computed. It is called backward passing. Also, ǫ∗i can
be computed at the second visit.

The algorithm needs the MST and the proper order of
message passing in terms of I and J , where It denote

Table 1. Minimax message passing: Pre-processing

Input: X = {xi}
N
i=1

Compute dij for all xi, xj ∈ X

Construct TX so that obtain {Ni}
N
i=1

Discard dij , ∀j /∈ Ni

Find the order of message passing I and J

Output: N , I,J , {dij |j ∈ Ni}
N
i=1

Table 2. Minimax message passing: The main algorithm

Input: N , I,J , {dij |j ∈ Ni}
N
i=1, {d∗i}

N
i=1

Initialize ǫ∗i ← d∗i, ∀i
For t = 1, · · · , 2N , repeat:

i← It; j ← Ji

If i wasn’t visited before (i.e. Forward passing),
ℓi ← arg min

k∈N
\j

i

mki (O(|Ni|) time)

mij ← max(dij , min(d∗i, mℓii))
Otherwise (i.e. Backward passing),

ǫ∗i ← min(d∗i, mℓii, mji)

mik ← max(dik, ǫ∗i), ∀k ∈ N
\j

i (O(|Ni|) time)
If mℓii < mji,

Compute miℓi
as in Eq. (7) (O(|Ni|) time)

Output: {ǫ∗i}
N
i=1

an index of a node to be visited at tth iteration and Ji

denote an index of the target node of forward passing
at node i. Table 1 summarizes the preprocessing. Al-
though it takes O(N2) time due to constructing TX ,
no more computation is needed for queries.

Table 2 summarizes the main algorithm. Note that

min(mℓii,mji) = min
p∈N

\k

i

mpi for all k ∈ N
\j

i since

mki ≥ mℓii. Thus mik = max(dik, ǫ∗i). Note also that
mji = min

p∈N
\ℓi
i

mpi (thus miℓi
= max(diℓi

, ǫ∗i)) if

mℓii ≥ mji, since mki ≥ mℓii ≥ mji for all k.

For a given query x∗ and the Euclidean distances
{d∗i}N

i=1, The algorithm computes all minimax dis-
tances {ǫ∗i}

N
i=1 in O(N) time: Each node performs

one forward and one backward passing, and each pass-
ing takes O(|Ni|) time. Since

∑N

i=1 |Ni| is two times
the number of edges, i.e., 2(N − 1), all N forward and
N backward passings take O(N) time.

The algorithm needs O(N) space to keep N (2(N −1)
space), I (2N space), J (N space), and {dij | j ∈
Ni}N

i=1 (N − 1 space).

Note that the above costs are only for incorporat-
ing the minimax distance into k-NN. If the database
{xi}N

i=1 and the computation of {d∗i}N
i=1 are counted,

both time and space complexity is precisely O(Nd),
where d is the dimensionality of a data set.
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4.2. Parameter-free

Most of graph-based semi-supervised learning meth-
ods suffer from a problem of tuning kernel parame-
ters such as σ in Eq. (1). The reasonable perfor-
mance is guaranteed only in a very narrow range of
σ. The more severe problem is that learning a proper
value of the parameter with a small number of labeled
points is intractable. Wang and Zhang (2006) pre-
sented this problem with experiments, and proposed a
quadratic programming algorithm for computing wij

without kernel parameters. It remedies the problem,
but needs more computations.

Our method does not have such a parameter-tuning
problem, since the minimax distance is invariant by
any non-decreasing mapping. More specifically, in k-
NN, xj is preferred to be a neighbor of xi rather than
xk iff dij ≤ dik, where the inequality is invariant to
any nondecreasing mapping, e.g., f(dij) ≤ f(dik) for
f(x) = exp(x2/σ2) and σ > 0. Our method is also
invariant, because ǫij is obtained from the Euclidean
distances by applying only max and min operations.

Of course, if a parameter influences dij itself, e.g., Σ in
dij = (xi−xj)

T Σ(xi−xj), our method and k-NN are
no longer free from the parameter. Such parameter,
however, should be treated as a distance metric.

Note that ǫ in Eq. (3) is not a parameter. In Sec.
3.2, we assume that the value of ǫ can be determined
differently for each pair of data points, and then de-
rive that its tight bound ǫij can be used as the global
dissimilarity. That is, ǫ is not a parameter chosen by
hand, but a solution of deterministic walks.

4.3. Augmented measure for retrieval

For retrieval, elements in a database should be ordered
with respect to the (dis)similarity to the query. Using
our method, however, xi and xj have an equal dis-
similarity if ǫ∗i = ǫ∗j , although d∗i is far greater than
d∗j . To remove such ambiguity, a small portion of the
value of the Euclidean distance can be added to the
minimax distance:

ǫλ
∗i = ǫ∗i + λd∗i, (9)

where λ is a small positive constant, e.g., λ = 0.01.
However, the measure can be incorrect if a manifold
of a class is highly nonlinear (e.g. S-shape curve) and
data points are (almost) uniformly distributed on the
manifold.

4.4. Multiple trees

If there are outliers between different manifolds, mov-
ing from one manifold to another is easier. More

specifically, ǫij is smaller for a pair xi,xj that belong
to the different manifolds each other, so that irrelevant
elements can be selected as neighbors.

To make it harder such movement, there are two ex-
treme ways that make it impossible to move to the dif-
ferent manifold, by constructing multiple trees where
each tree is disconnected with the other trees. One
way is constructing the MST from k-nearest neighbor-
hood graphs rather than the complete graph. Wang
and Zhang (2006) presented that the global geometry
can be captured better by neighborhood graphs than
the complete graph if a proper value of k is chosen. An-
other way is constructing the MST with a constraint.
Using labeled points in a database, one can construct
multiple MSTs as each tree representing each class, by
the constraint that any two labeled points that belong
to the different classes each other cannot be in the
same tree. Clearly, both ways can be used together.

5. Numerical Experiments

We compared our minimax algorithm (MM) with k-
NN classifier for k = 1, and harmonic Gaussian (HG)
that is a variant of graph-based semi-supervised learn-
ing (Zhu et al., 2003). The parameter σ in Eq. (1) was
chosen as 0.0003 for ORL, 0.00015 for Yale-B, and 1.25
for USPS. All the others followed as Zhu et al. (2003)
did.

For MM, we divided a data set into a set of queries
Q and a partially labeled database X . Then we con-
structed multiple MSTs of X described in Sec. 4.4:
(1) The MST is from the 10 nearest neighbor graph;
(2) Every MST does not contain two or more labeled
points belonging to the different classes. Once the
MST of X is constructed, ǫ∗i is computed for each
query. The combined measure was used as in Eq. (9)
with λ = 0.01. For retrieval, k nearest points were
retrieved w.r.t. ǫ∗i. For classification, the nearest la-
beled point (i.e. k = 1) was retrieved.

5.1. Synthetic data

We designed a synthetic data set to illustrate the ef-
fect of the global geometry. It contains N unlabeled
data points and 20 labeled points generated from four
Gaussians, as Fig. 3 illustrates. The data set has non-
linear geometry, so that is intractable for linear metric
learning techniques.

We compared MM with k-NN. 1000 query points from
the Gaussians were used for classification. Table 3
summarizes the result. N denotes the number of unla-
beled points. The number of labeled points was 20 for
all experiments. MM definitely outperformed k-NN.
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Figure 3. Two classes are on four Gaussian manifolds al-
ternately, and 5 labeled points denoted by big black circles
are near the boundary of each Gaussian.

We also measured the running time of our method,
programmed in C. All experiments were done on a
3.0GHz Pentium 4 CPU with 512KB of cache and
1.5GB of RAM. Table 3 shows that our method ac-
tually runs in linear time so that can handle a large
scale data set. The regression equation was of the form
Time = 0.0044219N −13.2225. Since the cache hit ra-
tio drops as the spatial locality decreasing for a large
N , there is little additional gap as N is increased, e.g.,
5 times 20000 is 100000 but 5×77ms < 416ms.

5.2. Image classification and retrieval

We applied our method to three real image datasets,
for classification and retrieval:

Yale-B (10 classes) : It contains 5760 images of 10
people under 9 poses and 64 illumination conditions.
We used all 64 illuminations of the frontal poses of 10
people. Those 640 images were cropped to 161 × 161
(i.e. 25921-dimension) where the center of a face is in
the center of its cropped image. Each jth component
of an image xi = [xi1, · · · , xi,25921] was normalized as

(xij −
1
N

∑N

k=1 xkj)/256/25921.

ORL (40 classes) : It contains 112×92 face images of
40 people (10 images/person). We used all 400 images
and divided each pixel by 2637824 (= 112× 92× 256).
Using ORL, we show that our method can handle a
data set having many classes.

USPS (4 classes) : It contains 16 × 16 handwritten
images of 10 digits. We used 3874 images of digits ‘1’
(1269 images), ‘2’ (929), ‘3’ (824), and ‘4’ (852). Since
images of digit ‘1’ obtain too small Euclidean distances
compared with that of the others, we normalized the
distance as dij = ‖xi − xj‖

2/
∑N

k=1‖xi − xk‖
2 for

MM. It is similar to normalizing the base similarity
as wij/

∑N

k=1 wik in the graph-based semi-supervised
learning methods. Using USPS, we show that our
method can effectively handle a dataset containing

Table 3. The computation time for our minimax algorithm
(MM) and classification accuracies for MM and k-NN on
the synthetic data set.

N Time (MM) Acc (MM) Acc (k-NN)

10000 35ms/query 100% 59.1%
20000 77ms/query 100% 55.0%
40000 165ms/query 100% 57.5%
100000 416ms/query 100% 58.8%
200000 877ms/query 100% 56.2%

many unlabeled points but a few labeled ones.

All results were averaged over 100 independent trials.
For each trial, labeled points were randomly chosen
but there is at least one labeled point for each class.
Two sets X and Q were also randomly divided for MM.

Fig. 4 shows the classification results. Our method
outperformed k-NN, and was comparable to HG. Fig.
5 shows the retrieval results. We evaluated the per-
formance in terms of the precision, i.e., [The number
of correctly retrieved points for the query]/k, where
k is the number of whole retrieved points. MM can
effectively utilize a few labeled points in X .

The right panel of Fig. 4 shows an interesting re-
sult that the accuracy on test data hardly depends on
the number of training points. For graph-based semi-
supervised learning, it is well known that there are
heuristics for predicting out-of-sample data in linear
time, such as k-NN majority voting or linear combina-
tion of training data points, but the accuracy on test
data decreases remarkably when the number of train-
ing points isn’t large enough (see the experiments in
(Wang & Zhang, 2006)) since the solutions are approx-
imations, not equal to the exact transductive solution.
On the other hand, our method obtains an exact so-
lution in terms of the minimax distance measure, in
linear time.

6. Related Work

Minimax distance was already studied (Carroll, 1995;
Gower & Ross, 1969), while it was mainly used for
clustering. The novelty of our work includes: (1) the
minimax message passing algorithm which scales lin-
early in both time and space, in order to compute the
minimax distance between a query (out-of-sample) and
a data point in database (in-sample); (2) investigation
of minimax distance in semi-supervised learning and
data retrieval; (3) an alternative view of minimax dis-
tance where the deterministic counterpart of Markov
random walks was exploited.
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Figure 4. Classification accuracies on partially labeled data sets. The vertical lines indicate the standard deviation and
the numbers in the legend denote the size of the database for MM. (Left) Yale-B, (Middle) ORL, (Right) USPS dataset.
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Figure 5. Precisions on retrieval from partially labeled databases. The numbers in the legend denote the number of labeled
images in the database. (Left) Yale-B dataset. For each trial, we randomly divided whole images into 600 images for a
database and 40 images for queries. (Middle) ORL dataset. 380 images for a database and 20 images for queries. (Right)
USPS dataset. 3000 images for a database and 874 images for queries.

There exist fast NN search methods (see
(Shakhnarovich et al., 2006) and references therein),
with their focus on efficient data structures. How-
ever, the classification or retrieval performance of
those methods was not improved, compared to the
standard k-NN, since their dissimilarity measures are
(approximated) Euclidean distances which do not
reflect the underlying global geometry of data. Thus
our scalability issue should be discussed only within
methods that take the global geometry into account.

7. Conclusions

We have presented a new neighbor search method
where the underlying global geometry of a data set
was exploited through minimax paths. We have intro-
duced deterministic walks as a deterministic counter-
part of Markov random walks, leading us to consider
the minimax distance as a global dissimilarity mea-
sure. For efficient calculation of minimax distances

between a query and data points in the database, we
have developed the minimax message passing algo-
rithm which scales with O(N) complexity in time and
in space. The method was applied to the problems
of semi-supervised classification and retrieval, showing
its useful behavior as an alternative to existing graph-
based semi-supervised learning methods and k-NN.

However, our method may be more vulnerable to
outliers, compared to random walks-based methods.
For example, the Euclidean commute-time distance
(ECTD) between nodes on a graph takes all existing
paths between nodes into account such that two nodes
are considered similar if there are many short paths
between them (Fouss et al., 2005). Thus, ECTD was
known to be more robust to outliers, compared to the
geodesic distance (shortest path). More work will be
done in the aspect of robustness, since the minimax
distance used in our method solely depends on a single
path (minimax path) just like the geodesic distance.
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