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Abstract. Nonnegative matrix factorization (NMF) is a popular method
for multivariate analysis of nonnegative data, the goal of which is decom-
pose a data matrix into a product of two factor matrices with all entries in
factor matrices restricted to be nonnegative. NMF was shown to be use-
ful in a task of clustering (especially document clustering). In this paper
we present an algorithm for orthogonal nonnegative matrix factoriza-
tion, where an orthogonality constraint is imposed on the nonnegative
decomposition of a term-document matrix. We develop multiplicative
updates directly from true gradient on Stiefel manifold, whereas exist-
ing algorithms consider additive orthogonality constraints. Experiments
on several different document data sets show our orthogonal NMF algo-
rithms perform better in a task of clustering, compared to the standard
NMF and an existing orthogonal NMF.

1 Introduction

Nonnegative matrix factorization (NMF) is a multivariate analysis method which
is proven to be useful in learning a faithful representation of nonnegative data
such as images, spectrograms, and documents [1]. NMF seeks a decomposition of
a nonnegative data matrix into a product of basis and encoding matrices with all
of these matrices restricted to have only nonnegative elements. NMF allows only
non-subtractive combinations of nonnegative basis vectors to approximate the
original nonnegative data, possibly providing a parts-based representation [1].
Incorporating extra constraints such as locality and orthogonality was shown to
improve the decomposition, identifying better local features or providing more
sparse representation [2]. Orthogonality constraints were imposed on NMF [3],
where nice clustering interpretation was studied in the framework of NMF.

A prominent application of NMF is in document clustering [4, 5], where a
decomposition of a term-document matrix was considered. In this paper we
consider orthogonal NMF and its application to document clustering, where an
orthogonality constraint is imposed on the nonnegative decomposition of a term-
document matrix. We develop new multiplicative updates for orthogonal NMF,
which are directly derived from true gradient on Stiefel manifold, while existing
algorithms consider additive orthogonality constraints. Experiments on several



different document data sets show our orthogonal NMF algorithms perform bet-
ter in a task of clustering, compared to the standard NMF and an existing
orthogonal NMF.

2 NMF for document clustering

In the vector-space model of text data, each document is represented by an m-
dimensional vector xt ∈ R

m, where m is the number of terms in the dictionary.
Given N documents, we construct a term-document matrix X ∈ R

m×N where
Xij corresponds to the significance of term ti in document dj that is calculated
by

Xij = TFij log

(
N

DFi

)
,

where TFij denotes the frequency of term ti in document dj and DFi repre-
sents the number of documents containing term ti. Elements Xij are always
nonnegative and equal zero only when corresponding terms do not appear in the
document.

NMF seeks a decomposition of X ∈ R
m×N that is of the form

X ≈ UV
⊤, (1)

where U ∈ R
m×K and V ∈ R

N×K are restricted to be nonnegative matrices
as well and K corresponds to the number of clusters when NMF is used for
clustering. Matrices U and V , in general, are interpreted as follows.

– When columns in X are treated as data points in m-dimensional space,
columns in U are considered as basis vectors (or factor loadings) and each
row in V is encoding that represents the extent to which each basis vector
is used to reconstruct each data vector.

– Alternatively, when rows in X are data points in N -dimensional space,
columns in V correspond to basis vectors and each row in U represents
encoding.

Applying NMF to a term-document matrix for document clustering, each
column of X is treated as a data point in m-dimensional space. In such a case,
the factorization (1) is interpreted as follows.

– Uij corresponds to the degree to which term ti belongs to cluster cj . In other
words column j of U , denoted by uj , is associated with a prototype vector
(center) for cluster cj .

– Vij corresponds to the degree document di is associated with cluster j. With
appropriate normalization, Vij is proportional to a posterior probability of
cluster cj given document di. More details on probabilistic interpretation of
NMF for document clustering are summarized in Sec. 2.2.



2.1 Multiplicative updates for NMF

We consider the squared Euclidean distance as a discrepancy measure between
the data X and the model UV

⊤, leading to the following least squares error
function

E =
1

2
‖X −UV

⊤‖2. (2)

NMF involves the following optimization:

arg min
U≥0,V ≥0

E =
1

2
‖X −UV

⊤‖2. (3)

Gradient descent learning (which is additive update) can be applied to determine
a solution to (3), however, nonnegativity for U and V is not preserved without
further operations at iterations.

On the other hand, a multiplicative method developed in [6] provides a simple
algorithm for (3). We give a slightly different approach from [6] to derive the
same multiplicative algorithm. Suppose that the gradient of an error function
has a decomposition that is of the form

∇E = [∇E ]
+
− [∇E ]

−
, (4)

where [∇E ]
+

> 0 and [∇E ]
−

> 0. Then multiplicative update for parameters Θ

has the form

Θ ← Θ ⊙

(
[∇E ]

−

[∇E ]
+

).η

, (5)

where ⊙ represents Hadamard product (elementwise product) and (·).η denotes
the elementwise power and η is a learning rate (0 < η ≤ 1). It can be easily seen
that the multiplicative update (5) preserves the nonnegativity of the parameter
Θ, while ∇E = 0 when the convergence is achieved.

Derivatives of the error function (2) with respect to U with V fixed and with
respect to V with U fixed, are given by

∇UE = [∇UE ]
+
− [∇UE ]

−
= UV

⊤
V −XV , (6)

∇V E = [∇V E ]
+
− [∇V E ]

−
= V U

⊤
U −X

⊤
U . (7)

With these gradient calculations, the rule (5) with η = 1 yields the well-known
Lee and Seung’s multiplicative updates [6]

U ← U ⊙
XV

UV
⊤

V
, (8)

V ← V ⊙
X

⊤
U

V U
⊤

U
, (9)

where the division is also an elementwise operation.



2.2 Probabilistic interpretation and normalization

Probabilistic interpretation of NMF, as in probabilistic latent semantic indexing
(PLSI), was given in [7] where equivalence between PLSI and NMF (with I-
divergence) was shown.

Let us consider the joint probability of term and document, p(ti, dj), which
is factorized by

p(ti, dj) =
∑

k

p(ti, dj |ck)p(ck)

=
∑

k

p(ti|ck)p(dj |ck)p(ck), (10)

where p(ck) is the prior probability for cluster ck. Elements of the term-document
matrix, Xij , can be treated as p(ti, dj), provided Xij are divided by 1⊤

X1 such
that

∑
i

∑
j Xij = 1 where 1 = [1, . . . , 1]⊤ with appropriate dimension.

Relating (10) to the factorization (1), Uik corresponds to p(ti|ck), represent-
ing the significance of term ti in cluster ck. Applying sum-to-one normalization
to each column of U , i.e., UD

−1

U where DU ≡ diag
(
1⊤

U
)
, we have an exact

relation
[
UD

−1

U

]
ik

= p(ti|ck).

Assume that X is normalized such that
∑

i

∑
j Xij = 1. We define a scaling

matrix DV ≡ diag
(
1⊤

V
)
. Then the factorization (1) can be rewritten as

X = (UD
−1

U )(DUDV )(V D
−1

V )⊤. (11)

Comparing (11) with the factorization (10), one can see that each element of the
diagonal matrix D ≡ DUDV corresponds to cluster prior p(ck). In the case of
unnormalized X, the prior matrix D absorb the scaling factor. In practice, the
data matrix does not have to be normalized in advance.

In a task of clustering, we need to calculate the posterior of cluster p(ck|dj).
Applying Bayes’ rule, the posterior of cluster is given by the document likelihood
and cluster prior probability. That is, p(ck|dj) is given by

p(ck|dj) ∝ p(dj |ck)p(ck)

=
[
D(V D

−1

V )⊤
]
kj

=
[
(DUDV )(D−1

V V
⊤)
]

kj

=
[
DUV

⊤
]

kj
. (12)

It follows from (12) that (V DU )⊤ yields the posterior probability of cluster,
requiring the normalization of V using the diagonal matrix DU . Thus, we assign
document dj to cluster k∗ if

k∗ = arg max
k

[V DU ]jk.



Document clustering by NMF was first developed in [4]. Here we use only dif-
ferent normalization and summarize the algorithm below.

Algorithm outline: Document clustering by NMF

1. Construct a term-document matrix X.
2. Apply NMF to X, yielding X = UV

⊤.
3. Normalize U and V :

U ← UD
−1

U ,

V ← V DU ,

where DU = 1⊤
U .

4. Assign document dj to cluster k∗ if

k∗ = arg max
k

Vjk.

3 Orthogonal NMF for document clustering

Orthogonal NMF involves a decomposition (1) as in NMF but requires that U

or V satisfies the orthogonality constraint such that U
⊤

U = I or V
⊤

V = I

[8]. In this paper we consider the case where V
⊤

V = I is incorporated into the
optimization (3). In such a case, it was shown that orthogonal NMF is equivalent
to k-means clustering in the sense that they share the same objective function [9].
In this section, we present a new algorithm for orthogonal NMF with V

⊤
V = I

where we incorporate the gradient on Stiefel manifold into multiplicative update.
Orthogonal NMF with V

⊤
V = I is formulated as following optimization

problem:

arg minU,V E =
1

2
‖X −UV

⊤‖2

subject to V
⊤

V = I,U ≥ 0,V ≥ 0. (13)

In general, the constrained optimization problem (13) is solved by introducing

a Lagrangian with a penalty term tr
{

Λ(V ⊤
V − I)

}
where Λ is a symmetric

matrix containing Lagrangian multipliers. Ding et al. [3] took this approach with
some approximation, developing multiplicative updates.

Here we present a different approach, incorporating the gradient in a con-
straint surface on which V

⊤
V = I is satisfied, into (5). With U fixed in (2),

we treat (2) as a function of V . Minimizing (2) where V is constrained to the
set of n×K matrices such that V

⊤
V = I was well studied in [10, 11]. Here we

incorporate nonnegativity constraints on V to develop multiplicative updates
with preserving the orthogonality constraint V

⊤
V = I. The constraint surface



which is the set of n ×K orthonormal matrices such that V
⊤

V = I is known
as the Stiefel manifold [12].

An equation defining tangents to the Stiefel manifold at a point V is obtained
by differentiating V

⊤
V = I, yielding

V
⊤

∆ + ∆
⊤

V = 0, (14)

i.e., V
⊤

∆ is skew-symmetric. The canonical metric on the Stiefel manifold [11]
is given by

gc(∆,∆) = tr

{
∆

⊤

(
I −

1

2
V V

⊤

)
∆

}
, (15)

whereas the Euclidean metric is given by

ge(∆,∆) = tr
{

∆
⊤

∆

}
. (16)

We define the partial derivatives of E with respect to the elements of V as

[∇V E ]ij =
∂E

∂Vij

. (17)

For the function E (2) (with U fixed) defined on the Stiefel manifold, the gradient

of E at V is defined to be the tangent vector ∇̃V E such that

ge (∇V E ,∆) = tr
{

(∇V E)
⊤

∆

}

= gc

(
∇̃V E ,∆

)

= tr

{(
∇̃V E

)⊤(
I −

1

2
V V

⊤

)
∆

}
, (18)

for all tangent vectors ∆ at V .
Solving (18) for ∇̃V E such that V

⊤∇̃V E is skew-symmetric yields

∇̃V E = ∇V E − V (∇V E)
⊤

V . (19)

Thus, with partial derivatives in (7), the gradient in the Stiefel manifold is
calculated as

∇̃V E = (−X
⊤

U + V U
⊤

U)− V (−X
⊤

U + V U
⊤

U)⊤V

= V U
⊤

XV −X
⊤

U

= [∇̃V E ]
+ − [∇̃V E ]

−. (20)

Invoking the relation (5) with replacing ∇V by ∇̃V yields

V ← V ⊙
X

⊤
U

V U
⊤

XV
, (21)

which is our ONMF algorithm. The updating rule for U is the same as (8).



4 Experiments

We tested our orthogonal NMF algorithm on the six standard document datasets
(CSTR, k1a, k1b, re0, and re1) and compared the performance with the stan-
dard NMF and the Ding et al.’s orthogonal NMF (DTPP)[3]. We applied the
stemming and stop-word removal for each dataset, and select 1,000 terms based
on the mutual information with the class labels. Normalized-cut weighting [4] is
applied to the input data matrix.

We use the accuracy to compare the clustering performance of different al-
gorithms. To compute the accuracy, we first applied Kuhn-Munkres maximal
matching algorithm [13] to find the appropriate matching between the cluster-
ing result and the target labels. If we denote the true label for the document n

to be cn, and the matched label c̃n, the accuracy AC can be computed by

AC =

∑N

n=1
δ(cn, c̃n)

N
,

where δ(x, y) = 1 for x = y and δ(x, y) = 0 for x 6= y. Because the algorithms
gave different results depending on the initial conditions, we calculated the mean
of 100 runs for different initial conditions. Our orthogonal NMF algorithm gave
better performance than the standard NMF and DTPP for the most of the
datasets (Table 1).

The orthogonality of the matrix V is also measured by using ‖V T
V −I‖. The

changes of the orthogonality over the iterations are measured and averaged for
100 trials. Our orthogonal NMF algorithm obtained better orthogonality than
DTPP for the most of the datasets. The change of orthogonality for the CSTR
dataset is shown in Fig. 1 for an example.

NMF DTPP ONMF
cstr 0.7568 0.7844 0.7268
wap 0.4744 0.4281 0.4917

k1a 0.4773 0.4311 0.4907

k1b 0.7896 0.6087 0.8109

re0 0.3624 0.3384 0.3691

re1 0.4822 0.4452 0.5090

Table 1: Mean clustering accuracies
(n=100) of standard NMF, Ding et

al.’s orthogonal NMF (DTPP), and our
orthogonal NMF (ONMF) for six doc-
ument datasets.
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Fig. 1: The orthogonality ‖V T
V − I‖

convergence of Ding et al.’s orthogo-
nal NMF (DTPP) and our orthogonal
NMF (ONMF) for the CSTR dataset.



5 Conclusions

We have developed multiplicative updates on Stiefel manifold for orthogonal
NMF and have successfully applied it to a task of document clustering, confirm-
ing its performance gains over standard NMF and existing orthogonal NMF.
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