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Abstract

In this letter we present a coupled Helmholtz machine for principal component analysis

(PCA), where sub-machines are related through sharing some latent variables and associated

weights. Then, we present a wake-sleep PCA algorithm for training the coupled Helmholtz

machine, showing that the algorithm iteratively determines principal eigenvectors of a data

covariance matrix without any rotational ambiguity, in contrast to some existing methods

that performs factor analysis or principal subspace analysis. The coupled Helmholtz machine

provides a unified view of principal component analysis, including various existing algorithms

as its special cases. The validity of the wake-sleep PCA algorithm is confirmed by numerical

experiments.
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1 Introduction

Spectral decomposition of a symmetric matrix involves determining eigenvectors of the matrix,

which plays an important role in various methods of machine learning and signal processing.

For instance, principal component analysis (PCA) or kernel PCA requires the calculation of

first few principal eigenvectors of a data covariance matrix or a kernel matrix, respectively. A

variety of methods have been developed for PCA (see [4] and references therein). A common

derivation of PCA, is illustrated in terms of a linear (orthogonal) projection W ∈ R
m×n such

that given a centered data matrix X ∈ R
m×N , the reconstruction error ‖X − WW⊤X‖2

F is

minimized, where ‖ · ‖F denotes the Frobenius norm. It is well known that the reconstruction

error is blind to an arbitrary rotation. Thus, the minimization of the reconstruction error leads

to W = U1Q where Q ∈ R
n×n is an arbitrary orthogonal matrix and U1 ∈ R

m×n contains n

principal eigenvectors.

The Helmholtz machine [3] is a statistical inference engine where a recognition model is

used to infer a probability distribution over the underlying causes from the sensory input and

a generative model is used to train the recognition model. The wake-sleep learning is a way

of training the Helmholtz machine and the delta-rule wake-sleep learning was used for factor

analysis [5]. In this letter, we present a coupled Helmholtz machine for PCA, where sub-

Helmholtz machines are related through sharing some latent variables as well as associated

weights. We develop a wake-sleep PCA algorithm for training the coupled Helmholtz machine,

showing that the algorithm iteratively determines principal eigenvectors of a data covariance

matrix without any rotational ambiguity, in contrast to some existing methods that performs

factor analysis or principal subspace analysis. In addition, we show that the coupled Helmholtz

machine includes [1, 2] as its special cases.

2 Proposed Method

2.1 Coupled Helmholtz Machine

We denote a centered data matrix by X = [Xit] ∈ R
m×N and the latent variable matrix by

Y ∈ R
n×N (n ≤ m represents the intrinsic dimension).

The coupled Helmholtz machine that is proposed in this letter, is described by a set of
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generative models and recognition models, where a set of n generative models has the form

X = AEiY , i = 1, . . . , n, (1)

where A ∈ R
m×n is the generative weigh matrix and Ei ∈ R

n×n is a diagonal matrix, defined

by

[Ei]jj =















1 for j = 1, . . . , i,

0 for j = i + 1, . . . , n.

The recognition model infers latent variables by

Y = W⊤X, (2)

where W ∈ R
m×n is the recognition weight matrix.

The set of generative models shares some latent variables Yit as well as associated generative

weights Aij , in such a way that the 2nd sub-model shares Y1t with the 1st sub-model and the

3rd sub-model shares Y1t and Y2t with the 2nd sub-model as well as Y1t with the 1st submodel,

and so on.

2.2 Wake-Sleep PCA Algorithm

The objective function that we consider here, is the integrated squared error that has the form

J =
n

∑

i=1

αi‖X − AEiW
⊤X‖2

F , (3)

where αi > 0 are positive coefficients.

We apply the alternating minimization to derive updating rules for A and W that iteratively

minimize (3). In the sleep phase, we fix A and solve ∂J

∂W
= 0 for W , leading to

W = A
[

U

(

A⊤A
)]−1

, (4)

where U(Z) is an element-wise operator, whose arguments Zij are transformed by

U(Zij) =















Zij

Pn
l=i αl

Pn
l=j αl

if i > j,

Zij if i ≤ j.

(5)
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Next, in the wake phase, we fix W and solve ∂J

∂A
= 0 for A, leading to

A = XY ⊤
[

U

(

Y Y ⊤
)]−1

. (6)

The updating algorithms in (4) and (6) are referred to as wake-sleep PCA (WS-PCA), that

is summarized below. As in [1], we can also consider the limiting case where αi+1

αi
→ 0 for

i = 1, . . . , n−1, that is, weighting αi’s are rapidly diminishing as i increases. In such a case, the

operator U(·) becomes the conventional upper-triangularization operator UT (·) where UT (Zij) =

0 for i > j and UT (Zij) = Zij for i ≤ j. The resulting algorithm is referred to as WS-PCA

(limiting case).

Algorithm Outline: WS-PCA

Sleep phase

W = A
[

U

(

A⊤A
)]−1

,

Y = W⊤X.

Wake phase

A = XY ⊤
[

U

(

Y Y ⊤
)]−1

.

3 Numerical Experiments

We provide a numerical example with X ∈ R
10×1000 (intrinsic dimension n = 5), in order to

demonstrate that the WS-PCA indeed finds the exact eigenvectors of XX⊤ without rotational

ambiguity. Fig 1 shows the convergence behavior of the WS-PCA algorithm (and its limiting

case) with different choice of αi. Regardless of values of αi, generative weights (or recognition

weights) converge to true eigenvectors. However, the convergence behavior of the WS-PCA

algorithm is slightly different, especially according to the ratio αi+1

αi
for i = 1, . . . , n − 1 (see

Fig. 1). The WS-PCA achieves the faster convergence, as the ratio, αi+1

αi
for i = 1, . . . , n − 1

decreases. In fact, the limiting case of WS-PCA (where UT is used instead of U) shows the

fastest convergence (see Fig. 1).
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4 Conclusion

We have introduced a coupled Helmholtz machine where latent variables as well as associ-

ated weights are shared by a set of Helmholtz machines. We have presented a wake-sleep-like

algorithm in the framework of the coupled Helmholtz machine, showing that the algorithm in-

deed determines the exact principal eigenvectors of a data covariance matrix without rotational

ambiguity. The WS-PCA algorithm includes [1, 2] as its special case, each of which is the

generative-only and the recognition-only counterpart, respectively. The WS-PCA algorithm is

useful in applications where only first few principal eigenvectors are required to be computed

from the high-dimensional data covariance matrix.
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Figure 1: Evolution of generative weight vectors, is shown in terms of the absolute value of the

inner produce between a weight vector and a true eigenvector (computed by SVD): (a) WS-

PCA with αi+1

αi
= 1 and α1 = 1; (b) WS-PCA with αi+1

αi
= 0.5 and α1 = 1; (c) WS-PCA with

αi+1

αi
= 0.1 and α1 = 1; (d) WS-PCA (limiting case)
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