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Abstract

Prediction of the cellular location of a protein plays an important role in inferring
the function of the protein. Feature extraction is a critical part in prediction systems,
requiring raw sequence data to be transformed into appropriate numerical feature
vectors while minimizing information loss. In this paper we present a method for
extracting useful features from protein sequence data. The method employs local
and global pairwise sequence alignment scores as well as composition-based features.
Five different features are used for training support vector machines (SVMs) sepa-
rately and a weighted majority voting makes a final decision. The overall prediction
accuracy evaluated by the 5-fold cross-validation reached 88.53% for the eukaryotic
animal data set. Comparing the prediction accuracy of various feature extraction
methods, provides a biological insight into the location of targeting information. Our
experimental results confirm that our feature extraction methods are very useful for
predicting subcellular localization of proteins.

Key words: Protein sequence feature extraction, Subcellular localization
prediction, Support vector machine.

1 Introduction

In a eukaryotic animal cell, nuclear-encoded proteins are synthesized by ri-
bosomes in the cytosol, and delivered to their proper cellular organelles for
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the co-operational execution of a common biological function. The delivery
of a newly-synthesized protein in the cytosol to an appropriate location, is
referred to as protein sorting or subcellular localization. Major protein sorting
processes can be divided into secretory and non-secretory pathways. In the
secretory pathway, all proteins are first delivered to the endoplasmic retic-
ulum (ER) and then transported to their associated final destinations. The
delivery of proteins to the ER is determined by ER signal sequences which are
generally located at the N-terminus. After translocation into the ER, most of
proteins move to the Golgi complex via transport vesicles, and some proteins
are delivered to the plasma membrane, lysosomes, or the extracellular ma-
trix by further sorting. All proteins that contain no ER signal sequences are
delivered through the non-secretory pathway. In this pathway, proteins with
organelle-specific signal sequences are imported into mitochondrion, peroxi-
some, or the nucleus according to their corresponding signal sequences. Pro-
teins having lack of any signal sequences, remain in the cytosol. The targeting
information of proteins directing them to their correct cellular destinations,
is stored either in the signal sequences (and additional sequences) or in the
form of post-translational modifications. Proteins delivered to the ER and the
mitochondrion have an N-terminal signal sequence. Proteins that are targeted
to the peroxisome, have a signal sequence which is located at the N-terminus
or C-terminus. Signal sequences directing proteins to the nucleus, are referred
to as nuclear localization signals and are present anywhere in the protein. In
the secretory pathway, proteins are sorted according to their final locations by
several targeting features such as signal sequences, topogenic sequences, and
post-translational modifications. The location of these features in the protein
sequence cannot be restricted to the subsequences [1, 19].

Predicting the cellular location of an unknown protein plays an important role
in inferring the possible function of the protein. Recently various methods have
been developed to improve the prediction accuracy. This cellular location pre-
diction, in fact, is a pattern classification problem that has been extensively
studied in machine learning, pattern recognition, and statistics communities,
since class labels related to cellular locations are already available in a set of
training data. Various classifiers including artificial neural networks (ANN),
support vector machines (SVM), and k-nearest neighbor algorithm (k-NN),
were applied to this classification problem. Accurate classification requires to
extract useful features from protein sequence data. Desirable feature extrac-
tion transforms the raw sequence into numerical feature vector, while minimiz-
ing information loss. In practice, the prediction accuracy is strongly affected
by feature extraction methods. Most of prediction methods can be divided into
two approaches, depending on their ways of feature extraction: (1) features
based on protein sequence data; (2) features based on ontology data.

In the protein sequence-based approach, two popular feature extraction meth-
ods include: (1) methods involving the recognition of N-terminal signal se-
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quences; (2) methods involving the detection of amino acids compositions
from an entire sequence. The former has a strong biological implication be-
cause proteins delivered to ER, mitochondrion, or peroxisome (partially) have
an N-terminal signal sequence [9, 25]. However, it is difficult to recognize un-
derlying features from a highly diverged signal sequence, as well as to vector-
ize those features. The latter approach partially overcomes these difficulties,
but lose the information regarding the context stored in the sequence data
[2, 13, 26]. The ontology-based approach has received much attention recently
because of its high prediction accuracy [3, 20]. This approach extracts the
text information of homologous sequences of a query sequence by searching
biological databases, in order to vectorize this information. It is not surprising
that this approach leads to good performance because it utilizes various extra
information derived from several sources. In addition, it cannot give biological
insights on factors specifying cellular locations of proteins. Although numerous
methods have been developed to improve the accuracy of subcellular localiza-
tion prediction, little research was conducted for feature extraction methods
relying solely on properties of amino acids sequence data.

In this paper, we present new sequence-driven feature extraction methods
to predict cellular locations of proteins. To this end, we introduce feature
extraction methods based on pairwise sequence alignment scores, including
N-terminal profile hidden Markov model (HMM) and local/global sequence
alignment. Moreover we also introduce methods based on amino acids compo-
sition to improve the prediction accuracy. Various features driven from protein
sequence data, are used to train SVMs separately. For classification, we use an
SVM ensemble to combine mixed types of features. Our experimental results
confirm that our proposed feature extraction methods considerably improve
the prediction accuracy and give a biological insight into the location of tar-
geting information within the protein sequence.

2 Feature extraction

Feature extraction for prediction of subcellular localization of proteins, re-
quires raw sequence data to be transformed into numerical feature vectors.
Recent studies on feature extraction methods based on properties of amino
acids sequences, are focused on the amino acids composition. Amino acids
composition and subcellular localization are related [5], however composition-
based methods have critical limitations in terms of their discriminative power
and location coverage. Recently we proposed a feature extraction method
where we used the scores of a global sequence alignment [17]. Despite its high
prediction accuracy, its time complexity was relatively higher, compared to
composition-based methods. Moreover its location coverage was also limited
to some proteins whose signal sequences are located at the N-terminus. In order
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to overcome these limitations, we present three different methods which ex-
tract features from signal sequences. We also consider two composition-based
methods to improve the prediction accuracy.

2.1 Clustering

In our recent work [17], we used one of global sequence alignment methods,
the Needleman-Wunsch algorithm [23] to compute scores between a sequence
and every sequence in the training set. These scores were used to convert a
protein sequence into a numerical feature vector. A drawback of this method
is that the computational complexity increases dramatically as the size of the
training set grows. In this paper, we select representative sequences in the
training data in order to decrease the computational complexity. To this end,
we carry out clustering using a constructed phylogenetic tree. The overall
clustering framework is illustrated below.

First, we truncate every sequence in the training set, preserving only first 40
residues corresponding to the N-terminus. We do not use the entire sequence
because it leads to very long average distance between pairs of sequences
within each cluster.

Second, all sequences in the training data are grouped into clusters according
to their associated class labels, so that phylogenetic trees are constructed
separately for each class.

Third, we calculate the Jukes-Cantor distance ρij between each pair of se-
quences:

ρij = −
19

20
log

(
1 − f

20

19

)
, (1)

where f is the fraction of sites where two sequences differ after they are aligned
using the Needleman-Wunsch algorithm [10, 7].

Next, we construct phylogenetic trees by the UPGMA clustering which is
the unweighted pair group method using arithmetic averages. The UPGMA
method is an agglomerative hierarchical clustering algorithm where each se-
quence is assigned to its own cluster first and then gradually these clusters
are merged into larger clusters until all sequences belong to a single cluster
[14]. The distance dij between two clusters Ci and Cj is defined by the average
distance between pairs of sequences from each cluster, i.e.,

dij =
1

|Ci||Cj|

∑

p∈Ci

∑

q∈Cj

ρpq, (2)

where |Ci| and |Cj| denote the number of sequences in clusters i and j, re-
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spectively.

The outline of the UPGMA clustering procedure is as follows. It begins by
assigning each sequence to its own cluster. We define one leaf node of the tree
for each sequence, placing at height 0. With this initialization, the following
procedures are iterated until only one cluster remains [7]. At each iteration,
we determine two clusters i and j for which dij is minimal, defining a new
cluster k by Ck = Ci ∪Cj. The new node k has child nodes i and j, placing it
at height dij/2. This procedure is repeated until only one cluster remains.

Clusters are determined by selecting some cluster-parent nodes in the con-
structed tree, considering all leaf nodes that share the same parent node to
be elements in the same cluster. Selection of these cluster-parent nodes are
carried out, according to their height as well as the number of their leaf nodes.
The bottom-up search from leaf nodes, finds nodes their height is above a pre-
specified height (say, 3, in our experiments). Child nodes of these nodes are
determined as cluster-parent nodes, while these cluster-parent nodes lead to
separate clusters whose elements are leaf nodes sharing the same cluster-parent
node. In addition, for balanced clustering, we split a cluster if the number of
leaf nodes belonging to a certain cluster-parent node is too large. This can be
done by its child nodes to be eligible cluster-parent nodes.

2.2 N-terminal profile hidden Markov model

Our first feature extraction method which exploits the properties of sequence
data, is to use N-terminal profile hidden Markov models (HMMs) that are
suited for a statistical modeling of sequences [7]. Hierarchically clustered se-
quences (that are obtained in Sec. 2.1) undergo multiple sequence alignment
for each cluster, where we used CLUSTALX 1.83 [29]. Note that the multi-
ple sequence alignment by CLUSTALX 1.83, for each cluster, was carried out
with truncated sequences (preserving first 40 residues corresponding to the
N-terminus). Then, we construct profile HMMs for each cluster using HMMer
2.3.1 [8], which represent families of N-terminal sequences.

In order to transform N-terminal sequences into numerical feature vectors,
we compute log-odds scores between sequences and profile HMMs. Given an
N-terminal sequence a = a1a2 . . . an of length n, the log-odds score s(a,M)
between the sequence a and the profile HMM M is defined by

s(a,M) = log2

p(a|M)

p(a|R)
, (3)

where p(a|M) is the probability of the sequence a given the model M and
p(a|R) is the probability of the sequence a given a random model R. In the

5



random model, p(a|R) is given by

p(a|R) =
n∏

i=1

pai
, (4)

where pai
is the probability of observing the amino acid ai in nature [7]. A

d-dimensional feature vector xt for the tth protein sequence has the form

xt = [xt1, xt2, . . . , xtd]
⊤ , (5)

where xti corresponds to the log-odd score between the tth sequence and the
ith profile HMM, and the superscript ⊤ denotes the matrix or vector transpose
operator. Note that d is associated with the total number of profile HMMs
constructed.

2.3 N-terminal global pairwise sequence alignment

The Needleman-Wunsch algorithm is a dynamic programming method which
finds the optimal global alignment between two sequences, allowing gaps. The
basic idea is to construct an optimal alignment using previous solutions for op-
timal alignments of smaller subsequences. Let us denote two protein sequences
of length m and n by a = a1a2 . . . am and b = b1b2 . . . bn, respectively. As a
shorthand notation, a1:i represents the initial subsequence of a up to ai, i.e.,
a1:i = a1 . . . ai.

We construct a matrix F ∈ R
(m+1)×(n+1) whose (i, j)-element, F (i, j), is the

score of the best alignment between a1:i and b1:j. Initializing F (0, 0) = 0, the
matrix F is built up recursively, with filled up from top left to bottom right,
through the following recursion:

F (i, j) = max






F (i − 1, j − 1) + s(ai, bj),

F (i − 1, j) − g,

F (i, j − 1) − g,

(6)

where s(ai, bj) is the score for the match between ai and bj, and g is a gap
penalty. In order to deal with some boundary conditions, we define F (i, 0) =
−ig and F (0, j) = −jg for the first column and the first row, respectively.
Filling in F (i, j) values, we determine the final cell of the matrix F , F (m,n),
which is the best score between two sequences a and b. We can find a global
alignment by tracing back choices from (6) that led to the final value F (m,n)
[10, 7].

Scores s(ai, bj) are obtained from a BLOSUM matrix [12] which is one of
widely-used substitution matrices. BLOSUM matrices are constructed from
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blocks of ungapped alignments of protein families. In each block there are
redundancies, hence, sequences that are sufficiently close to each other, are
grouped into the same cluster. Each resulting cluster is considered as a single
sequence. The closeness between sequences is determined by specifying a cut-
off identity X%. The frequency Aab of observing the amino acid pair ab aligned
in the same column of blocks is calculated by summing each occurrence in all
the blocks. Since each cluster is considered as a single sequence, the occurrence
is corrected by weighting the factor 1

n1n2

, where n1 and n2 are sizes of clusters.
Then, the score s(a, b) is computed by

s(a, b) = log

(
pab

papb

)
, (7)

where pab = Aab∑
cd

Acd
, pa =

∑
b
Aab∑

cd
Acd

, and pb =
∑

a
Aab∑

cd
Acd

. The log-odds score is

scaled and rounded to an integer value. The BLOSUM matrix with X = 50,
is referred to as ’BLOSUM50’, which is widely-used for alignment with gaps
[7].

In contrast to our earlier work [17] where all the sequences in the training set
were used for pairwise sequence alignment, we select a representative sequence
randomly from each cluster, in order to reduce the computational complexity.
The minimal allowable length of sequences is restricted to 80, where the first
residue should be methionine, implying that the first residue is translated
from the start codon. Note that here we use sequences truncated after first 80
residues, while only first 40 residues are used for the case of N-terminal profile
HMM. The size of the N-terminus cannot be clearly determined, therefore, we
consider two conflicting properties that include the information loss as well as
divergence. As the N-terminal size increases, the sequence divergence within
each sequence family increases but the information loss decreases.

A d-dimensional feature vector xt for the tth protein sequence has the form

xt = [xt1, xt2, . . . , xtd]
⊤ , (8)

where xti is the score of the Needleman-Wunsch algorithm between the tth se-
quence and the ith representative sequence (the representative sequence ran-
domly selected from the ith cluster). Note that d is equal to the total number
of selected representative sequences. The gap penalty was set to be −8 and
the BLOSUM50 matrix was used as a substitution matrix.

2.4 Full sequence local pairwise sequence alignment

The Smith-Waterman algorithm [28] finds the optimal alignment between sub-
sequences of a and b. This is a local alignment algorithm, which can be used to
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seek common patterns or domains in two sequences. The algorithm is closely
related to the Needleman-Wunsch algorithm, but the main difference lies in
the following recursive equation

F (i, j) = max






0,

F (i − 1, j − 1) + s(ai, bj),

F (i − 1, j) − g,

F (i, j − 1) − g.

(9)

The option 0 means that we start a new local alignment at the position. Since
every element of the matrix F is nonnegative, the first row and the first column
are filled with 0’s. To find the optimal local alignment, we first look for the
highest value of F (i, j), and trace back the choices of the recursion until we
meet an element with value 0 [7].

So far we have assumed that signal sequences are located at the N-terminus,
expecting the global alignment between two N-terminal regions. A more com-
mon case is a situation where signal sequences or targeting signals are located
anywhere in the protein. In such a case, the more reasonable way of detecting
the internal targeting information is to use the Smith-Waterman algorithm.
Representing a protein sequence by the scores of the Smith-Waterman algo-
rithm was successfully used in the SVM-pairwise for detecting remote struc-
tural and evolutionary relationships [18]. The general procedure for this fea-
ture extraction method is almost same as what was carried out with the the
Needleman-Wunsch algorithm, except for two differences. These differences
include: (1) protein sequences are not truncated (instead, full sequences are
used); (2) local alignment is used, instead of global alignment.

A d-dimensional feature vector xt for the tth protein sequence has the form

xt = [xt1, xt2, . . . , xtd]
⊤ , (10)

where xti is the score of the Smith-Waterman algorithm between the tth se-
quence and the ith representative sequence. Note that d is equal to the total
number of selected representative sequences. Since d is equal to the total num-
ber of clusters, it is also equal to the total number of profile HMMs.

2.5 Full sequence dipeptide composition

It is known that amino acids composition and subcellular localization is re-
lated [5]. However, the predictive power of the composition-based approach
is not sufficient to discriminate all proteins. The dipeptide composition is an
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extension of amino acids composition, where we add the information on the
local order of amino acids. The dipeptide means two consecutive amino acids
in a protein sequence. Twenty different amino acids lead to 400 combina-
tions of dipeptide. In practice, it is proved that the dipeptide composition
has superior predictive power, compared to the amino acids composition. The
compositional fraction of the ith dipeptide fdc(i) is given by

fdc(i) =
N(i)

∑400
j=1 N(j)

, (11)

where N(i) is the total count of the ith dipeptide in the protein sequence.
Then, the feature vector xt for the tth protein sequence is given by

xt =
[
fdc

t (1), fdc
t (2), . . . , fdc

t (400)
]⊤

, (12)

where fdc
t (i) is the compositional fraction of the ith dipeptide in the tth protein

sequence.

2.6 Full sequence physico-chemical properties

Since the signal sequences are not well conserved, it is generally thought that
the factors determining the cellular locations are physico-chemical proper-
ties such as hydrophobicity or the position of charged amino acids [1]. We
consider 121 physico-chemical properties, the list of which is available at
http://home.postech.ac.kr/∼blkimjk/aaindex1m.txt, in order to repre-
sent a protein sequence by a 121-dimensional feature vector based on amino
acids composition. We use the AAindex database [15] to get the values of
physico-chemical properties for all 20 amino acids, which are thought to be
related to protein functions. To be expressed in comparable units, the val-
ues are normalized by subtracting the mean off and dividing by the standard
deviation. The average value of the ith physico-chemical property is defined
by

ϕ(i) =
20∑

j=1

Ai(j)f
ac(j), (13)

where Ai(j) is the normalized value of the jth amino acid of the ith physico-
chemical property and fac(j) is the compositional fraction of the jth amino
acid. The feature vector xt for the tth protein sequence is given by

xt = [ϕt(1), ϕt(2), . . . , ϕt(121)]⊤ , (14)

where ϕt(i) is the average value of the ith physico-chemical property in the
tth protein sequence.
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3 Classification

3.1 Support vector machine classifier

SVM classifiers have recently been used as popular and powerful tools for
classification, due to their strong theoretical origin at statistical learning the-
ory as well as their high performance in practical applications [11, 6]. SVM
classifiers are kernel-based learning algorithms, determining the optimal hy-
perplane decision boundary in the feature space. In kernel-based algorithms, a
kernel trick leads us to process the data in a feature space without the explicit
knowledge of a nonlinear mapping from the data space to a feature space. The
high dimensionality of a feature space might cause the curse of dimensional-
ity. However, the optimal separating hyperplane with a maximal margin in
the feature space, can relieve this problem. In statistical learning theory, we
can minimize the complexity term of the upper bound of the expected risk
by maximizing the margin of the separating hyperplane. The minimization of
the upper bound can be viewed as relieving the over-fitting problem [22]. The
maximization of the margin can be formulated as a quadratic optimization
problem so that a global solution can be easily obtained.

In the present study, we used OSU SVM Matlab toolbox 3.00 for the SVM
classifier that is freely available at http://www.ece.osu.edu/∼maj/osu svm.
The prediction of subcellular localization is a multi-class classification prob-
lem, but the SVM classifier can only deal with the binary one. Therefore, we
need to construct a set of binary classifiers for multi-class classification. We
construct (M−1)M/2 binary classifiers for M classes. In this pairwise classifi-
cation, each possible pair of classes is considered and a test pattern is classified
by the majority voting. This approach has two advantages over the one versus

the rest method. The weak point of the latter approach is that it compares
the real values in outputs of M binary classifiers directly. Because each binary
classifier is trained on different binary classification problems, their real values
in outputs of the classifiers may not be suitable for comparison. In addition,
in the one versus the rest approach, the numbers of positive and negative
training data points are not symmetric. These two weak points can be solved
by the pairwise classification [27]. The kernel function used in this study is
the radial basis function (RBF) kernel with one parameter γ:

k(x,y) = exp
{
−γ‖x − y‖2

}
. (15)

During the training and testing, only the RBF kernel parameter γ and the
regularization parameter C were considered and the remaining parameters
were kept constant.
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3.2 Weighted majority voting

SVM ensemble is a collection of several SVM classifiers whose individual de-
cisions are combined in some aggregation methods. It is known that the per-
formance of SVM ensemble is often much better than that of individual SVM
classifiers, because of independently-trained SVM classifiers and their uncor-
related errors [16]. Since we train several independent SVM classifiers for each
differently extracted feature vector, we need to aggregate them in an appropri-
ate manner. The majority voting is the simplest and widely-used aggregation
method.

Let Ĉk(x), k = 1, ..., K (K is the total number of separately-trained SVM
classifiers), be the class label predicted by the kth SVM classifier, given a
feature vector x. Denote by Cm (m = 1, ...,M) class label m, where M is the
total number of class labels. For the case of a dataset with 9 classes, M = 9.
Given a data vector x, the decision of the SVM ensemble Ĉ (x) is determined
by

Ĉ (x) = arg max
m

K∑

k=1

Ikm, (16)

where

Ikm =






1 if Ĉk(x) = Cm,

0 otherwise.
(17)

This voting scheme treats all SVM classifiers with equal weights. Prediction
errors of SVM classifiers are often different, thus, it is more reasonable to give
them different weights, in proportion to their prediction performance. In the
weighted majority voting, the predicted class label of the SVM ensemble is
given by

Ĉ (x) = arg max
m

K∑

k=1

W (k,m)Ikm, (18)

where W (k,m) is the weight when the predicted class label of the kth classifier
is Cm. The weights can be determined by calculating appropriate performance
measure for each classifier. Details are illustrated in Sec. 4.3.

3.3 The proposed prediction system

The overall schematic diagram of our prediction system is illustrated in Fig. 1.
The prediction system consists of four steps. First, a target protein sequence
is truncated after first 40 or 80 residues in order to get the N-terminus. Next,
truncated sequences are transformed into two different feature vectors which
are constructed by computing the scores of pairwise sequence alignments based
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on the profile HMMs and the Needleman-Wunsch algorithm, respectively. The
full sequence is also converted into three different feature vectors that are
constructed by computing the scores of the Smith-Waterman algorithm, or
by calculating the compositional fractions of all dipeptides and the average
values of 121 physico-chemical properties.

Representative sequences and profile HMMs are divided into two sets, one of
which contains positive data and the other of which contains negative data.
The positive set contains samples (or associated models) whose class labels
match the target sequence, and the negative set contains the rest of samples
(or models). In this way, the discriminative power of feature vectors increases,
since two sets contain the information on positive examples as well as negative
ones.

Five different feature vectors are fed into separate classifiers, each of which
consists of (M − 1)M/2 binary SVM classifiers for M classes. In this pairwise
classification, the feature vector is assigned to the class label associated with
the highest value in the majority voting. Finally the weighted majority voting
makes a final decision, according to five predicted class labels.

Protein sequence

Protein
sequence(1:40)

Protein
sequence(1:80)

Profile HMM
Smith-

Waterman
Needleman-

Wunsch
Dipeptide

composition
Physico-chemical

properties

SVM
classifier 1

SVM
classifier 2

SVM
classifier 3

SVM
classifier 4

SVM
classifier 5

Weighted majority
voting

Prediction result

Fig. 1. The schematic diagram of the proposed prediction system is illustrated.
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4 Numerical experiments and results

4.1 Data sets

We used the animal data set generated by [20] for training and evaluating our
prediction system. All sequences in the data set were extracted from SWISS-
PROT release 42.7, and their cellular locations were chosen by referring to the
SUBCELL field. More information on the data generation steps is available at
http://www.cs.ualberta.ca/∼bioinfo/PA/Subcellular/experiments/Extract D
ata 42 7.html. We excluded protein sequences containing ambiguous amino
acids such as B, Z, or X. As shown in Table 1, the data set consists of 11688
eukaryotic animal proteins with 9 cellular locations: cytoplasm, ER, extracel-
lular, golgi, lysosome, mitochondrion, nucleus, plasm membrane, and peroxi-
some.

Table 1
The number of proteins of each cellular locations in the data set.

Cellular location Number of sequences

Cytoplasm 1945

ER 607

Extracellular 4410

Golgi 184

Lysosome 163

Mitochondrion 1220

Nucleus 2940

Plasma membrane 111

Peroxisome 108

Total 11688

4.2 Evaluation

The performance of our prediction system was evaluated using 5-fold cross-
validation. In 5-fold cross-validation, the whole data set was partitioned into
five exclusive subsets, and in turn one subset was used for the test data and the
remaining sets were used for the training data. To measure the performance,
sensitivity, specificity, Matthew’s correlation coefficient (MCC) [9, 21], and
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overall accuracy were calculated using the following equations:

Sensitivity(m) =
tp(m)

tp(m) + fn(m)
, (19)

Specificity(m) =
tp(m)

tp(m) + fp(m)
, (20)

MCC(m) =
tp(m)tn(m) − fp(m)fn(m)

√
de(m)

, (21)

Overall accuracy =

∑M
m=1 tp(m)

N
, (22)

where

de(m) = (tp(m) + fn(m)) (tp(m) + fp(m)) (tn(m) + fp(m)) (tn(m) + fn(m)) ,

(23)

and m represents the mth class, N is the total number of sequences, M is
the total number of classes, tp(m) (true positive) is the number of correctly
predicted sequences of mth class, tn(m) (true negative) is the number of cor-
rectly predicted sequences which is not in mth class, fp(m) (false positive) is
the number of over predicted sequences of mth class, and fn(m) (false negative)
is the number of under predicted sequences of mth class.

4.3 Results

We applied 5-fold cross-validation to select proper values of parameters includ-
ing: (1) RBF kernel width γ and regularization parameter C in the SVM clas-
sifier; (2) weights W (k,m) in the SVM ensemble. For 5-fold cross-validation,
we carry out clustering for each training dataset, to construct 5 different sets
of profile HMMs and of representative sequences. For each feature extraction
method, the SVM classifier is trained separately and optimal values of SVM
parameters are selected in such a way that the SVM classifier maximize the
overall accuracy for five test datasets. As performance measures, we compute
sensitivity, specificity, and MCC for each SVM classifier. In the case of the
weighted majority voting, we use these three measures to determine weights
W (k,m) in Eq. (18).

The performance of all the feature extraction methods is summarized in Ta-
ble 2, 3, 4, 5, and 6. Features based on N-terminal profile HMMs (γ = 0.003
and C = 10) showed the overall accuracy of 83.62%. In the case of features
based on the N-terminal Needleman-Wunsch algorithm (γ = 2 and C = 100),
the prediction accuracy reached 83.25% which is slightly lower, compared to
N-terminal profile HMMs. These two feature extraction methods that are spe-
cialized for extracting targeting information from N-terminal signal sequences,

14



showed similar prediction patterns. In other words, their sensitivity for golgi,
lysosome, and plasma membrane was very low, whereas they predicted ex-
tracellular, mitochondrial, and nuclear proteins with high accuracy. The sen-
sitivity for cytoplasm, ER, and peroxisome was moderate (See Table 2 and
3).

Results with features based on full sequences, were considerably different from
the N-terminal-based methods. Features based on the Smith-Waterman algo-
rithm (γ = 80 and C = 10) showed the prediction accuracy of 83.23%. The
overall accuracy of features based on dipeptide composition (γ = 170 and
C = 10) and physico-chemical properties (γ = 4 and C = 10) reached 85.82%
and 82.29%, respectively. In these three methods which are based on full se-
quences, the sensitivity for golgi, lysosome, and plasma membrane increased
remarkably (See Table 4, 5, and 6). In addition, the specificity of these three
methods was generally lower than that of the two methods based on N-terminal
sequences.

To construct the SVM ensemble from the collection of separately-trained SVM
classifiers, we tested four different aggregation methods in the framework of
unweighted/weighted majority voting. Table 7 summarizes the overall accu-
racy for these four aggregation methods, including an unweighted majority
voting and three weighted majority voting methods (based on sensitivity,
MCC, and specificity). An shown in Table 7, the specificity-based weighted
majority voting achieved the best accuracy.

We investigate the performance of various SVM ensembles that are constructed
by different combinations of five separately-trained SVM classifiers. All these
SVM ensembles are built using the specificity-based weighted majority vot-
ing. The first SVM ensemble (ensemble 1) was constructed by combining the
three SVM classifiers based on the pairwise sequence alignment (N-terminal
profile HMMs, N-terminal Needleman-Wunsch algorithm, and full sequence
Smith-Waterman algorithm). The overall accuracy of the ensemble 1 reached
86.17%, which was higher than that of any individual SVM classifier. The
second SVM ensemble (ensemble 2) was constructed based on dipeptide com-
position and physico-chemical properties. The prediction accuracy of the en-
semble 2 is slightly lower than that of the ensemble 1, and even worse than
that of the dipeptide composition-based method. To compare the effect of two
composition-based features in the ensemble 1, we construct two new SVM en-
sembles (ensemble 3 and 4) that are different from the ensemble 1. As shown
in Table 8, features based on dipeptide composition have more influence on
the performance of the resulting SVM ensemble, compared to features based
on physico-chemical properties. Finally, the SVM ensemble combining all five
SVM classifiers (referred to as ensemble 5) showed the overall accuracy of
88.53%. The prediction accuracy of our SVM ensemble is nearly 10% higher
than that of previous methods relying solely on amino acids sequence proper-
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ties [4, 24]. However, it is less meaningful to compare the prediction accuracy
directly because the datasets are different. Comparing with the ontology-based
approach, whose accuracy is about 4% higher than our method, is also unfair
since ontology-based methods use various extra information extracted from
ontological labels [20].

Table 9 shows that the location of targeting information has a strong influence
on the average sensitivity of feature extraction methods that are based on
N-terminal sequences and full sequences. Proteins targeted to extracellular,
mitochondrion, and nucleus were predicted by the N-terminal-based methods
with higher accuracy. This result, in the case of nuclear proteins, are not well
matched with the fact that the nuclear localization signals can be located
anywhere. However, from this result, we may logically assume that most of
nuclear localization signals are located at the N-terminus. For proteins whose
targeting information is not restricted to the N-terminus, full sequence-based
methods showed better sensitivity.

Table 2
Prediction performance of subcellular localization based on the N-terminal profile
HMM.

Location Specificity Sensitivity MCC Accuracy

Cytoplasm 0.8005 0.6725 0.6813

ER 0.8184 0.6458 0.7118

Extracellular 0.8899 0.9515 0.8596

Golgi 1.0000 0.3587 0.5953

Lysosome 0.9630 0.3190 0.5508 0.8362

Mitochondrion 0.9366 0.8107 0.8553

Nucleus 0.7464 0.9099 0.7521

Plasma membrane 0.9500 0.3423 0.5679

Peroxisome 0.9667 0.5370 0.7185

5 Concluding remarks

We have presented a method for predicting cellular locations of proteins, where
features associated with protein sequences were constructed by scores of pair-
wise sequence alignment, or by amino acids compositional information. The
high prediction performance of our method was verified, using eukaryotic an-
imal data sets, through 5-fold cross validation. The high performance mainly
resulted from various types of features driven by sequences and partly came

16



Table 3
Prediction performance of subcellular localization based on the N-terminal
Needleman-Wunsch algorithm.

Location Specificity Sensitivity MCC Accuracy

Cytoplasm 0.8092 0.7172 0.7124

ER 0.9557 0.6755 0.7935

Extracellular 0.8684 0.9544 0.8420

Golgi 0.9636 0.2880 0.5230

Lysosome 0.9583 0.2822 0.5166 0.8325

Mitochondrion 0.8909 0.7631 0.8029

Nucleus 0.7538 0.8854 0.7429

Plasma membrane 0.9394 0.2793 0.5098

Peroxisome 0.9630 0.4815 0.6787

Table 4
Prediction performance of subcellular localization based on the full sequence Smith-
Waterman algorithm.

Location Specificity Sensitivity MCC Accuracy

Cytoplasm 0.7400 0.7522 0.6893

ER 0.8608 0.7743 0.8052

Extracellular 0.8523 0.9358 0.8134

Golgi 0.7159 0.3424 0.4890

Lysosome 0.9381 0.5583 0.7204 0.8323

Mitochondrion 0.8555 0.7525 0.7776

Nucleus 0.8448 0.8500 0.7888

Plasma membrane 0.8868 0.4234 0.6101

Peroxisome 0.9259 0.4630 0.6523

from a simple SVM ensemble which combined the contribution of these fea-
tures.

It is expected that the discriminative power of sequence-driven features (con-
structed by scores of pairwise sequence alignment) increases, since they contain
positive information as well as negative information. Increasing the number
of representative sequences (each of which was randomly drawn from each
cluster), is expected to improve the prediction accuracy. This was already
confirmed in our earlier work [17] where it was observed that the prediction ac-
curacy was highly correlated with the number of representative sequences. As
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Table 5
Prediction performance of subcellular localization based on the full sequence dipep-
tide composition.

Location Specificity Sensitivity MCC Accuracy

Cytoplasm 0.7724 0.7784 0.7265

ER 0.8679 0.8336 0.8414

Extracellular 0.8737 0.9567 0.8517

Golgi 0.8416 0.4620 0.6188

Lysosome 0.9206 0.7117 0.8068 0.8582

Mitochondrion 0.8293 0.7943 0.8223

Nucleus 0.8701 0.8524 0.8103

Plasma membrane 0.9455 0.4685 0.6632

Peroxisome 0.9412 0.5926 0.7448

Table 6
Prediction performance of subcellular localization based on the full sequence
physico-chemical properties.

Location Specificity Sensitivity MCC Accuracy

Cytoplasm 0.7338 0.7357 0.6754

ER 0.8328 0.8204 0.8153

Extracellular 0.8485 0.9222 0.7984

Golgi 0.7109 0.4946 0.5866

Lysosome 0.8133 0.7485 0.7766 0.8229

Mitochondrion 0.8438 0.7574 0.7736

Nucleus 0.8376 0.8071 0.7562

Plasma membrane 0.8254 0.4685 0.6188

Peroxisome 0.7692 0.5556 0.6505

Table 7
The performance comparison of different majority voting methods.

Voting scheme Overall accuracy

Unweighted majority voting 0.8842

Weighted majority voting (sensitivity) 0.8775

Weighted majority voting (MCC) 0.8813

Weighted majority voting (specificity) 0.8853
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the number of representative sequences increases, the representational space of
protein sequences is growing so that the generalization performance of features
derived from those sequences is expected to increase.

In our methods of feature extraction, we have used a biological prior knowledge
on N-terminal signal sequences. We have shown that N-terminal-based features
improved the prediction accuracy for proteins having N-terminal signal se-
quences. We have also shown that the specificity-based majority voting scheme
was effective for constructing the SVM ensemble from separately-trained SVM
classifiers. From the comparative study with several SVM ensembles, we have
shown that the prediction performance was significantly improved by combin-
ing pairwise sequence alignment-based features with composition-based fea-
tures.

Comparing the average sensitivity of the N-terminal sequence-based method
and the full sequence-based method, has led us to get a biological insight into
the location of the targeting information. There is still a main problem to be
further explored. For proteins whose targeting information is not restricted to
the N-terminus, the sensitivity is considerably low. Therefore, more study will
be required to resolve this low sensitivity problem. On the other hand, our
current study is expected to serve as a platform from which studies on devel-
oping feature extraction methods based on amino acids sequence properties
may be undertaken with greater depth and specificity.
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Table 8
The performance comparison of five different SVM ensembles.

Method Location Specificity Sensitivity MCC Accuracy

Cytoplasm 0.8905 0.7064 0.7548

ER 0.9485 0.6985 0.8046

Ensemble 1 Extracellular 0.8717 0.9780 0.8668

(SW+NW+ Golgi 0.9701 0.3533 0.5817

HMM) Lysosome 0.9667 0.3558 0.5832 0.8617

Mitochondrion 0.8885 0.8492 0.8516

Nucleus 0.8062 0.9184 0.8054

Plasma membrane 0.9130 0.3784 0.5853

Peroxisome 0.9516 0.5463 0.7190

Cytoplasm 0.8822 0.6776 0.7318

ER 0.8270 0.8666 0.8366

Extracellular 0.8482 0.9692 0.8374

Ensemble 2 Golgi 0.8830 0.4511 0.6267

(DC+PC) Lysosome 0.8872 0.7239 0.7985 0.8504

Mitochondrion 0.8701 0.7631 0.7222

Nucleus 0.8311 0.8755 0.7964

Plasma membrane 0.9123 0.4685 0.6513

Peroxisome 0.9412 0.5926 0.7448

Cytoplasm 0.8963 0.7064 0.7584

ER 0.9554 0.7414 0.8333

Extracellular 0.8649 0.9902 0.8711

Ensemble 3 Golgi 1.0000 0.3587 0.5954

(SW+NW+ Lysosome 0.9848 0.3988 0.6235 0.8691

HMM+PC) Mitochondrion 0.9181 0.8549 0.8715

Nucleus 0.8253 0.9126 0.8166

Plasma membrane 0.9423 0.4414 0.6427

Peroxisome 0.9531 0.5648 0.7317

Cytoplasm 0.8822 0.7548 0.7845

ER 0.9500 0.7512 0.8367

Extracellular 0.8756 0.9907 0.8822

Ensemble 4 Golgi 1.0000 0.3750 0.6090

(SW+NW+ Lysosome 0.9789 0.5706 0.7446 0.8815

HMM+DC) Mitochondrion 0.9373 0.8582 0.8842

Nucleus 0.8483 0.9129 0.8345

Plasma membrane 0.9455 0.4685 0.6633

Peroxisome 0.9701 0.6019 0.7624

Cytoplasm 0.8727 0.7578 0.7770

ER 0.9498 0.8105 0.8707

Extracellular 0.8844 0.9871 0.8876

Ensemble 5 Golgi 0.9877 0.4348 0.6519

(SW+NW+ Lysosome 0.9798 0.5951 0.7610 0.8853

HMM+PC+ Mitochondrion 0.9342 0.8615 0.8844

DC) Nucleus 0.8565 0.9116 0.8398

Plasma membrane 0.9474 0.4865 0.6767

Peroxisome 0.9706 0.6111 0.7684

HMM: N-terminal profile HMM, NW: N-terminal Needleman-Wunsch algorithm, SW: Full sequence Smith-

Waterman algorithm, PC: Full sequence physico-chemical properties, DC: Full sequence dipeptide compo-

sition
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Table 9
The comparison of the average sensitivity for feature extraction methods based on
N-terminal sequences and full sequences, with the targeting information.

Location Targeting info. N-terminal Full sequence

Cytoplasm No 0.6949 0.7554

ER ERS+α 0.6607 0.8094

Extracellular ERS 0.9530 0.9382

Golgi ERS+α 0.3233 0.4330

Lysosome ERS+α 0.3006 0.6728

Mitochondrion MS 0.7869 0.7681

Nucleus NLS 0.8977 0.8365

Plasma membrane ERS+α 0.3108 0.4535

Peroxisome PS 0.5093 0.5371
No: No targeting information, ERS: ER signal sequence (N-terminal), MS: Mitochondrion signal sequence

(N-terminal), NLS: Nuclear localization signals (anywhere), PS: Peroxisome signal sequence (N-terminal

or C-terminal), α: additional targeting information, N-terminal: average sensitivity of profile HMM and

Needleman-Wunsch algorithm, Full sequence: average sensitivity of dipeptide composition, physico-chemical

properties, and Smith-Waterman algorithm
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