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In this paper we present a method for continuous EEG classification, where we employ nonnegative
tensor factorization (NTF) to determine discriminative spectral features and use the Viterbi algorithm
to continuously classify multiple mental tasks. This is an extension of our previous work on the use of
nonnegative matrix factorization (NMF) for EEG classification. Numerical experiments with two data
sets in BCI competition, confirm the useful behavior of the method for continuous EEG classification.
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1. Introduction

Brain computer interface (BCI) is a system that is
designed to translate a subject’s intention or mind
into a control signal for a device such as a com-
puter, a wheelchair, or a neuroprosthesis 35. BCI
provides a new communication channel between hu-
man brain and computer and adds a new dimension
to human computer interface (HCI). It was moti-
vated by the hope of creating new communication
channels for disabled persons, but recently draws at-
tention in multimedia communication as well 13.

The most popular sensory signal used for BCI
is electroencephalogram (EEG) which is the multi-
variate time series data where electrical potentials
induced by brain activities are recorded in a scalp.
Inferring the human intention using EEG is similar
to inferring what is going on in a game from the
hubbub outside a stadium. If a lot of people in the
stadium shout simultaneously when a team scores a
goal or loses a goal, we can guess the situation only
just hearing hubbub outside the stadium, without
being in the stadium. Stimuli make neurons to cheer
in chorus, which makes EEG to have certain charac-
teristics.

Exemplary spectral characteristics of EEG, in mo-
tor imagery tasks which are considered in this pa-
per, are µ rhythm (8-12 Hz) 35 and β rhythm (18-25
Hz) which decrease during movement or in prepa-
ration for movement (event-related desynchroniza-
tion, ERD) and increase after movement and in re-
laxation (event-related synchronization, ERS). How-
ever those phenomena could happen in different fre-
quency bands, depending on subjects. For instance,
they might occur in 16-20 Hz, not in 8-12 Hz 20.

EEG classification using ERD and ERS during
motor imagery, has been extensively studied. Along
this line, various methods have been developed with
promising results 26,25,31,32. Besides motor imagery
task, cognitive tasks has recently been studied in
BCI community, including word generation, recall,
expectancy, subtraction, and so on. Spectral proper-
ties related to cognition and perception are known to
involve in the gamma band (30-100 Hz) at posterior
and central scalp and to involve in the theta band (3-
7 Hz) at bilateral and midline frontal scalp if they are
also related with memory 14. However, such charac-
teristics are not strongly distinguishable, compared
to ERD and ERS. Moreover, their variations are very

large depending on subjects. Therefore, methods for
determining meaningful discriminative features be-
come more important.

Linear data model is a widely-used method for
multivariate data analysis, including principal com-
ponent analysis (PCA), linear discriminant analysis
(LDA), and independent component analysis (ICA).
Linear data model assumes that the observed mul-
tivariate data is represented by a weighted linear
sum of basis vectors. Depending on criteria, differ-
ent meaningful basis vectors are learned from data
and appropriate features (corresponding to encoding
variables) are determined by simply projecting data
onto basis vectors. It was also shown in EEG analy-
sis and classification 23,24,30.

Nonnegative matrix factorization (NMF) is an-
other interesting linear data model, which is more
appropriate for handling nonnegative data 21,22. In
contrast to other linear data models, NMF allows
only non-subtractive combinations of nonnegative ba-
sis vectors, providing a parts-based representation.
The time-frequency representation of EEG data com-
puted by short-time Fourier transform or wavelet
transform, 3,1,2,16 can be cast into a nonnegative data
matrix. Recently, NMF was shown to be useful in de-
termining discriminative basis vectors which well re-
flect meaningful spectral characteristics without the
cross-validation in motor imagery EEG task 25.

Multiway analysis extends aforementioned linear
methods, working with multiway data array which
is referred to as tensor∗. PARAFAC 19 and multiway
SVD (higher-order SVD) 10,11 are exemplary meth-
ods which are extensions of factor analysis and SVD.
Recently PARAFAC model was exploited in EEG
data analysis 28. Nonnegative tensor factorization
(NTF) incorporates nonnegativity constraints into
PARAFAC model, extending NMF in the framework
of tensor algebra 34,33. Various information diver-
gences were employed in NTF 9,8.

In this paper, we revisit PARAFAC model and
present a NTF algorithm in a compact form, in the
framework of tensor algebra. Then we cast the time-
frequency representation of multichannel EEG data
into aN -way tensor and apply NTF to determine dis-
criminative spectral features. With these features,
we use the Viterbi algorithm for continuous EEG
classification with no trial structure. The rest of

∗A vector is a 1-way tensor and a matrix is a 2-way tensor.
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this paper is organized as follows. Sec. 2 provides
a background for NMF and NTF as well as for fun-
damental knowledge related to tensor algebra. The
proposed NTF-based method is illustrated in detail
in Sec. 3. Numerical experiments and results with
two data sets in BCI competition, are presented in
Sec. 4. Finally conclusions are drawn in Sec. 5.

2. Nonnegative Tensor Factorization

We present a brief overview of NMF and NTF, which
is necessary to understand the proposed method. We
begin with NMF and updating rules in the case of I-
divergence. Then we explain fundamental operations
used in tensor analysis and present a NTF algorithm
in a compact form.

2.1. NMF

Suppose that l observed m-dimensional data points,
{xt}, t = 1, . . . , l are available. Denote the data
matrix by X = [x1 · · · xl] = [Xij ] ∈ Rm×l. Linear
data model seeks a factorization that is of the form

X = X̂ ≈ AS, (1)

whereA ∈ Rm×n contains basis vectors in its columns
and S ∈ Rn×l is the associated encoding variable
matrix.

NMF is one of widely-used multivariate analysis
methods for nonnegative data, which has many po-
tential applications in pattern recognition and ma-
chine learning 29,21,22. NMF seeks a decomposition
(1) of the nonnegative data matrix X with matrices
A and S restricted to have only nonnegative ele-
ments. Various error measures for the factorization
with nonnegativity constraints, can be considered.
For example, see 22,6,7,12 for different NMF algo-
rithms with various error functions. In this paper
we only consider I-divergence which is given by

D[X ‖ AS] =
∑

i,j

[
Xij log

Xij

[AS]ij
−Xij + [AS]ij

]
.

NMF involves the following optimization problem:

arg min
A,S

D[X ‖ AS] (2)

s.t. Aij , Sij ≥ 0 ∀i, j. (3)

The multiplicative updating rules for iteratively de-

termining a local minimum of (2), are given by

Sij ← Sij

[
Σk[Aki(Xkj/[AS]kl)]

ΣlAli

]
, (4)

Aij ← Aij

[
Σk[Sjk(Xik/[AS]ik)]

ΣlSjl

]
. (5)

2.2. NTF

NTF is a recent multiway extension of nonnegative
matrix factorization (NMF), where nonnegativity con-
straints are incorporated into the PARAFAC model
34,33,17. Image data, video data, or spectral data of
time series naturally fit in 3-way or multiway struc-
ture. A multiway data array is referred to as a ten-
sor. A vector is a 1-way tensor, a matrix is a 2-way
tensor, a cube is a 3-way tensor, and so on. Spectral
EEG data can represented by a tensor whose coordi-
nates correspond to channel, class, trial, and so on,
whereas a data matrix is limited to only 2 coordi-
nates in the case of NMF.

2.2.1. Multiway analysis

Notations used for tensor analysis are summarized in
Table 1.

Table 1. Notations.

Notation Description

X N -way tensor
X matrix
X(n) mode-n matricization of tensor X
A(n) mode-n component matrix in Eq. (7)
� Khatri-Rao product
◦ outer product
~ Hadamard product

The N -way tensor X ∈ RI1×I2×···×IN has N in-
dices (i1, i2, . . . , iN ) and its elements are denoted by
xi1,i2,...,iN where 1 ≤ in ≤ In. Mode-n vectors of an
N -way tensor X are In-dimensional vectors obtained
from X by varying index in while keeping the other
indices fixed. In matrix, column vectors are referred
to as mode-1 vectors and row vectors correspond to
mode-2 vectors.

The mode-n vectors are column vectors of the
matrix X(n) ∈ RIn×In+1In+2···INI1I2···In−1 which is
the mode-n matricization (matrix unfolding) of the
tensor X (Fig. 1).
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The scalar product of two tensors X ,Y is defined
as

〈X ,Y〉 =
∑

i1,i2,...,iN

xi1,i2,...,iN yi1,i2,...,iN ,

where X ,Y ∈ RI1×I2×···×IN . The Frobenius norm of
a tensor X is given by ‖ X ‖=

√
〈X ,X 〉.
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3
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Fig. 1. Unfolding a 3-way tensor X ∈ RI1×I2×I3 leads to
X(1) ∈ RI1×I2I3 , X(2) ∈ RI2×I3I1 and X(3) ∈ RI3×I1I2 .

2.2.2. PARAFAC model

An N -way tensor X ∈ RI1×I2×···×IN had rank-1
when it equals to the outer product of N vectors:

X = a(1) ◦ a(2) ◦ · · · ◦ a(N),

where a(n) ∈ RIn for n = 1, 2, . . . , N . In an element-
wise form, it is written as

Xi1,i2,...,iN = a
(1)
i1
a

(2)
i2
· · · a(N)

iN
,

where a
(n)
in

denotes the inth element of the vector
a(n). The rank of an N -way tensor X , denoted R =
rank(X ), is the minimal number of rank-1 tensors
that is required to yield X :

X ≈ X̂ =
R∑
r=1

A(1)
:,r ◦A(2)

:,r ◦ · · · ◦A(N)
:,r , (6)

where A(n)
:,r represents the rth column vector of the

component matrix A(n) ∈ RIn×R.

The PARAFAC model seeks the rank-R approx-
imation of the tensor X in (6). In an element-wise
form, Eq. (6) is written as

Xi1,i2,...,iN ≈ X̂i1,i2,...,iN =
R∑
r=1

a
(1)
i1r
a

(2)
i2r
· · · a(N)

iNr
.

3-way PARAFAC model is shown in Fig. 2. The
mode-n matricization of X in the PARAFAC model,
is expressed by Khatri-Rao products (column-wise
Kronecker product) of component matrices:

X(n) ≈ A(n)
[
A(n−1) � · · · �A(2) �A(1)

�A(N) � · · · �A(n+2) �A(n+1)
]>

= A(n)S
(n)
A . (7)

I1

I2

I
3 A

:,1
(3)

A
:,1

(2)

A:,1
(1)

A
:,R

(3)

A
:,R

(2)

A:,R
(1)

X

Fig. 2. The rank-R approximation of a 3-way tensor
through the PARAFAC model.

2.2.3. Updating rules

NTF added nonnegtive constraints of component ma-
trices in the factorization to the PARAFAC model.
The objective function of NTF is similar to NMF

D[X ‖ X̂ ] =
∑

i1,i2,...,iN

[
Xi1,i2,...,iN log

Xi1,i2,...,iN
X̂i1,i2,...,iN

−Xi1,i2,...,iN + X̂i1,i2,...,iN
]
.

Multiplicative update rules for iteratively determin-
ing a nonnegative component matrices which mini-
mize the objective function is quite similar to algo-
rithms in NMF. Eq. (7) is of the same form as NMF
model. Thus, updating rules for A(n) follow NMF
updating rules for A.

A(n) ← A(n) ~

[
X(n)/

(
A(n)S

(n)
A

)]
S

(n)
A

T

1zT
, (8)

where / is the element-size division, 1 ∈ RIn×1, z ∈
RJn×1 with zi =

∑
j

[
S

(n)
A

]
ij

. Updating rule of each
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component matrices can be easily derived as in NMF
updating rules by matricizing the PARAFAC model
into associated modes.

3. Proposed Method

The proposed methods for EEG classification con-
sists of three steps: (1) preprocessing (by wavelet
transform); (2) NTF-based feature extraction; (3)
classification. Each of these steps is described in de-
tail, following the brief description of two different
data sets used in our numerical experiments.

3.1. Data description

For our empirical study, we used two data sets: one
is the dataset III in BCI competition II, which was
provided by the Laboratory of Brain-Computer In-
terfaces (BCI-Lab), Graz University of Technology
4,26, and the other is the dataset V in BCI competi-
tion III, which was provided by the IDIAP Research
Institute 18.

3.1.1. Graz dataset

The Graz dataset involves left/right imagery hand
movements and consists of 140 labelled trials for train-
ing and 140 unlabelled trials for test. Each trial has
a duration of 9 seconds, where a visual cue (arrow)
is presented pointing to the left or the right after
3-second preparation period and imagination task
is carried out for 6 seconds. It contains EEG ac-
quired from three different channels (with sampling
frequency 128 Hz) C3, Cz and C4. In our study we
use only two channels, C3 and C4, because ERD has
contralateral dominance and Cz channel contains lit-
tle information for discriminant analysis. Require-
ments for result comparison is to provide a continu-
ous classification accuracy for each time point of trial
during imagination session.

3.1.2. IDIAP dataset

The IDIAP dataset contains EEG data recorded from
3 normal subjects during 4 non-feedback sessions,
which involves three tasks, including the imagina-
tion of repetitive self-paced left/right hand move-
ments and the generation of words beginning with
the same random letter. All 4 sessions were acquired
on the same day, each lasting 4 minutes with 5-10
minutes breaks in between them. The subject per-

formed a given task for about 15 seconds and then
switched randomly to another task at the operator’s
request. In contrast to the Graz dataset, EEG data
is not splitted in trials, since the subjects are contin-
uously performing any of the mental tasks (i.e., no
trial structure).

Data are provided in two ways: (1) raw EEG sig-
nals (with sampling rate = 512 Hz) recorded from
32 electrodes; (2) precomputed features. We use
the precomputed features for numerical experiments.
They were obtained by the power spectral density
(PSD) in the band 8-30 Hz every 62.5 ms, (i.e., 16
times per second) over the last second of data with
a frequency resolution of 2 Hz for the eight centro-
parietal channels C3, Cz, C4, CP1, CP2, P3, Pz,
and P4 after the raw EEG potentials were first spa-
tially filtered by means of a surface Laplacian. As
a result, an EEG sample is a 96-dimensional vec-
tor (eight channels times 12 frequency components).
Requirements for comparative study are to provide
an output every 0.5 second using the last second of
data.

3.2. Preprocessing

We construct a data tensor from spectral EEG data.
In what follows, labeled and unlabeled data tensors
are denoted by X train and X test, respectively.

3.2.1. Graz dataset

We obtain the time-frequency representation of the
EEG data, by filtering it with complex Morlet wavelets,
where the mother wavelet is given by

Ψ0(η) = π−1/4eiw0ηe−η
2/2,

where w0 is the characteristic eigenfrequency (gen-
erally taken to be 6). Scaling and temporal shifting
of the mother wavelet, leads to Ψτ,d(f) controlled by
the factor η = (t− τ)/d(f) where

d(f) =
w0 +

√
2 + w2

0

4πf
,

where f is the main receptive frequency.
We denote by C1,c,k(t) and C2,c,k(t) the EEG

waveforms measured from C3 and C4 channels, in
the kth trial with label c ∈ {1, 2} (corresponding to
left/right imagery hand movements). The wavelet
transform of Ci,c,k(t) (i = 1, 2) at time τ and fre-
quency f is their convolution (denoted by ∗) with
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scaled and shifted wavelets. The amplitude of the
wavelet transform is given by

x(f, i, τ, c, k) =
∥∥Ci,c,k(t) ∗Ψτ,d(f)(t)

∥∥ ,

for f ∈ {4, 5, . . . , 30} Hz, i = 1, 2 (C3 and C4 chan-
nels), τ = 1, . . . , T where T is the number of data
points in each trial, c = 1, 2 (left/right imagery hand
movements), and k = 1, . . . ,K where K is the num-
ber of trials. The data tensor, X ∈ R27×2×2×T×K ,
is given by

Xf,i,c,τ,k = x(f, i, c, τ, k). (9)

3.2.2. IDIAP dataset

In this case, we use precomputed features (power
spectral densities in the band 8 − 30 Hz). Thus
the data tensor X ∈ R12×8×3×T is constructed by
normalizing spectral components Pi(f, c, t) (precom-
puted features), i.e.,

Xf,i,c,t =
Pi(f, c, t)∑
f Pi(f, c, t)

, (10)

for f ∈ {8, 10, . . . , 28, 30} Hz, i = 1, 2, . . . , 8 (corre-
sponding to 8 different channels, including C3, Cz,
C4, CP1, CP2, P3, Pz, and P4), c = 1, 2, 3 (corre-
sponding to three tasks such as left/right imagery
hand movements and word generation), t = 1, . . . , T
where T is the number of data points (note that there
is no trial structure in this dataset).

3.3. Feature extraction

We illustrate how to extract discriminative spectral
features by applying NTF to preprocessed data. De-
pending on a way of constructing a data tensor X ,
classification results are slightly different.

3.3.1. Data selection

Instead of using whole training data, we discard out-
liers and select a portion of data which is expected
to be more discriminative. Then these selected data
are used as inputs to NTF, in order to learn compo-
nent matrices A(n). In some cases where the data
tensor involves both temporal and trial coordinates,
we use a whole data set without the data selection
step, since it destroys the structure (for example, the
case of X ∈ R27×2×T×2K in Table 2).

We use the nearest neighbor method for data se-
lection. To this end, we calculate mean matrices Xc

for each class. For instance, given X = [Xf,i,c,t,k],
the mean matrix for each c, Xc, is given by

Xc =
T∑
t=1

K∑

k=1

X :,:,c,t,k.

In the case of Graz dataset, Xc ∈ R27×2 (c = 1, 2).
For each class, we select slices X :,:,c,t,k which are
nearest neighbors of the mean matrix. Denote by Ts
the number of selected slices. We choose Ts which is
not less than 43% of TK slices for each class in the
case of Graz dataset. In the case of IDIAP dataset,
we choose Ts which is not less than 95% of T slices.
Imagery hand movements provide more prominent
characteristics than the mental task of word genera-
tion. That is why the number of selected data points
for Graz dataset is much smaller, compared to IDIAP
dataset.

The data selection through the nearest neigh-
bor method is useful, especially when the spectral
characteristics of a mental task is not known. EEG
data involving only motor imagery task, we can use
sparseness and energy for data selection 25, because
the µ rhythm is strongly activated on motor cortex.
However, the spectral characteristics of EEG data in-
volving the word generation is not well-known. Some
existing work 14,27 state that such a mental task is
related with gamma band between 30-100 Hz. Many
BCI tasks have been worked in low frequency bands
(below 30 Hz) because the sampling frequency is pro-
portional to the amount of data set, which directly
affects the real-time implementation. Cognitive task
also increases in theta power between 3-7 Hz at bi-
lateral and midline frontal scalp sites but it is not as
prominent as the µ rhythm. If we use the sparseness
measure and the power spectrum, these data can be
discarded.

3.3.2. NTF-based feature extraction

We construct data tensors in various ways. For Graz
dataset, X ∈ R27×2×2×T×K . For IDIAP dataset,
X ∈ R12×8×3×T . Table 2 summarizes the dimension
of N -way data tensors (N = 2, 3, 4) used for NMF
and NTF, after the data selection step. For instance,
in the case of the 2-way tensor (Graz dataset), fre-
quencies and channels are concatenated in rows and
class labels and Ts are concatenated in columns, which



Nonnegative Tensor Factorization for Continuous EEG Classification

leads to X ∈ R54×2Ts . One can easily figure out a
way of constructing the rest of data tensors in Table
2, from their dimension.

Table 2. N -way data tensors used for NTF.

N-way tensor Graz IDIAP

2 X ∈ R54×2Ts X ∈ R96×3Ts

3 X ∈ R27×2×2Ts X ∈ R12×8×3Ts

4 (time) X ∈ R27×2×T×2K

4 (class) X ∈ R27×2×2×Ts X ∈ R12×8×3×Ts

Applying NTF to data tensors listed in Table 2,
leads to component matrices A(n), n = 1, . . . , N , fol-
lowing (7). Note that in the case of NMF, X = AS,
the encoding variable matrix S serves as features.
By analogy with this, in the case of NTF, the Nth
component matrix A(N) serves as features. Given
test data X test, we have

A(N)S
(N)
A = [X test](N) , (11)

where [X test](N) is the mode-N matricization of the

tensor X test. In the training phase, S(N)
A is deter-

mined. Given X test, there are two different ways to
determine features A(N):

• One way is to use a simple LS projection, lead-

ing to [X test](N)

[
S

(N)
A

]†
where † represents

the pseudo-inverse. In such a case, A(N) is not
a nonnegative matrix. However, in the view-
point of feature extraction, it is acceptable.
In fact, such a simple LS projection has been
widely used for face recognition using NMF.

• The other way is to apply the NTF algorithm
(8) to update only A(N) with fixing other com-
ponent matrices A(n) for n = 1, . . . , N − 1.

Here we use the former method (LS projection)
due to its lower complexity. In our numerical ex-

X2 XTX3

Y1 Y2 YTY3

X1

PSfrag replacements
c1
c2
c3
cT
a1

a2

a3

aT

Fig. 3. The graphical model involving the Viterbi algo-
rithm is shown.

periments, the former method gives slightly better
classification accuracy (1− 2% better) than the lat-
ter one.

Note that test data do not have label information.
Thus, in constructing the test data tensor X test, we
duplicate test data C times in order to fill in the
coordinate involving the class label.

3.4. Classification

3.4.1. Graz data with trial structure

For the single-trial online classification for Graz data
(with trial structure), we use a Gaussian probabilis-
tic model-based classifier 26 where Gaussian class-
conditional probabilities for a single point in time
t are integrated temporally by taking the expecta-
tion of the class probabilities with respect to the
discriminative power at each point in time. In the
case of the 4-way data tensor (with time) in Table 2,
we do not need the integration step because it can
find temporal bases suitable for classification for each
channel and frequency. In such a case, the mode-
4 matricization of the test data X ∈ R27×2×t×1 at
time t will make X (4) ∈ R1×54t and its basis ma-
trix S

(4)
A ∈ RR×54t calculated by A(1) ∈ R27×R,

A(2) ∈ R2×R and A(3)
(1:t,:) ∈ Rt×R.

3.4.2. IDIAP data with no trial structure

For the on-line classification for IDIAP data which
consist of uncued EEG signals, we use the Viterbi al-
gorithm 15 that is a dynamic programming algorithm
for finding a most probable sequence of hidden states
that explains a sequence of observations. The graph-
ical model involving the Viterbi algorithm is shown
in Fig. , where hidden states follow the first-order
Markov chain and an observed variable at time t de-
pends on only a hidden state at time t.

The dependency between hidden states at t − 1
and t is defined by a transition probability P (ct|ct−1)
and the dependency between observation at t and
hidden state at t is defined by an emission probabil-
ity P (at|ct). In our case, hidden states correspond
to class labels, i.e., ct ∈ {1, 2, 3} which are related to
imagery left/right hand movements and the imagina-
tion of word generation. Therefore, transition prob-
ability can be defined by the 3× 3 transition matrix
Φ(ct, ct−1) satisfied

∑
ct

Φ(ct, ct−1) = 1. We should
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define the initial probability of hidden states π(c1)
satisfied

∑
c1
π(c1) = 1. Observed data at can be

both discrete and continuous, in our case, observed
data is continuous value that obtained by feature ex-
traction, that is, at is the column vector of A(N) in
( 11). We define the emission probability is normal
distribution with mean µct and covariance matrix
Σct ,

P (at|ct) = N (at|µct ,Σct)

= (2π)−
R
2 |Σct |−

1
2

exp
(
−1

2
(at − µct)TΣ−1

ct (at − µct)
)
.

The initial probability π(ct), the transition ma-
trix Φ(ct, ct−1) and mean µct and covariance matrix
Σct of emission probability can be calculated by the
features of training data.

π(c1) =
Nc1∑3
c1=1Nc1

, (12)

Φ(ct, ct−1) =
Nct−1,ct∑3
ct=1Nct−1,ct

, (13)

where Nc is the number of data in class c ∈ {1, 2, 3}
and Nc,d is the number of transition from class c ∈
{1, 2, 3} to class d ∈ {1, 2, 3}.

The mean µct and the covariance matrix Σct of
emission probability can be calculated by the feature
of training data.

µc =
1
Nc

∑

at∈Cc
at,

Σc =
1

Nc − 1

∑

at∈Cc
(at − µc)(at − µc)T ,

where c ∈ {1, 2, 3}, t ∈ {1, . . . , T} and Cc is a data
set involved in the cth class.

After estimating all probabilities in the phase of
training, how can we inference the hidden label given
the test sequence? Given first data points, the hid-
den class information c1 can calculate like this :

c∗1 = arg max
c1

P (c1|a1)

= arg max
c1

P (c1,a1)

= arg max
c1

P (a1|c1)P (c1).

The second equality is established because P (a1) is
not related with c1. Continuing the next data points,

c∗1, c
∗
2 = arg max

c1,c2
P (c2, c1,a1,a2)

= arg max
c1,c2

P (a2|c2)P (c2|c1)P (c1,a1)

= arg max
c1,c2

P (a2|c2)P (c2|c1)δ1(c1,a1)

...

c∗1, . . . , c
∗
t =

arg max
c1,...,ct

P (at|ct)P (ct|ct−1)δt−1(ct−1,at−1).

We can calculate the most likely current hidden state
only keeping the past probability δt−1(ct−1,at−1) be-
cause dependency exists only between time t and
time t − 1. We feed the last seconds of data (16
data points) every 0.5 sec (every 8 data points) into
Viterbi algorithm, then infer the most likely class.

4. Numerical Experiments

We apply our methods to Graz dataset in BCI com-
petition II with single-trial classification of motor im-
agery task and IDIAP dataset in BCI competition III
with continuous EEG classification of three classes.
The overall structure is basically (1) preprocessing,
(2) feature extraction with data selection, and (3)
classification. Above mentioned, the analysis proce-
dure is slightly different according to the data set and
the data sturucture. In the case of Graz dataset, we
need to change the data form from temporal one to
spectral one using morlet Wavelet during preprocess-
ing. However, in the case of IDIAP dataset, we do
only normalization because we use the precomputed
features. The other difference between data set is
the classifier. The Graz dataset use the Gaussian
probabilistic model combining the information across
time (except for the 4-way tensor (time) structure in
Table 2, because the temporal information can be
explained by the the component matrix A(3) which
involved in the temporal dimension, in this case, we
just use the Gaussian probabilistic model only taking
a single time point into account), while the IDIAP
dataset use the Viterbi algorithm because it has no
trial structure, thus, there is no fixed tendency across
time.

For Graz dataset, NMF is enough to extract the
meaningful features which discriminate between classes,
thus, the extension to NTF is not necessary. For
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IDIAP dataset, the classification accuracy of NTF
is better than one of NMF, moreover, the proposed
method combining NTF and Viterbi algorithm works
better than the winner’s method proposed in BCI
competition III. Thus, we will focus on comparing
the bases for Graz dataset and the classification re-
sults for IDIAP dataset by doing various way tensor
analyses.

4.1. NMF v.s. NTF

The basis vectors, the row vectors of S(N)
A in (11)

are illustrated in Fig. 6. they are obtained by NMF,
3-way NTF, and NTF with 4-way tensor (class) in
Table 2 (from top to bottom) and the number of basis
r = 2, 4, 5, 6 (from left to right). In each plot, top 1/2
is associated with C3 and bottom 1/2 is contributed
by C4.

The first line shows the results of NMF for the
number of basis, r = 2, 4, 5, 6 (from (a) to (d)). They
finds the concatenated basis vector of spectral C3
and C4 channels 25. As the number of basis vector
increases, the spectral components such as µ rhythm
(8-12 Hz), β rhythm (18-22 Hz), and sensori-motor
rhythm (12-16 Hz), appear in the order of their im-
portance. All rhythms have the property of con-
tralateral dominance.

The second line shows the result of 3-way tensor.
The basis vectors are the row vectors of S(3)

A of 3-
way tensor in (11), X ∈ Rfreq.×channel×trial. While
NMF finds the sparse basis vectors which one of C3
(upper half part) C4 (lower half part) channels are
activated, NTF finds the basis vectors which both
channels are activated because it finds the basis for
each channel separately by mode-n matricization as
(8). The order of the activated frequecy bands is
similar to the one of NMF.

The last line shows the basis vectors of NTF with
4-way tensor (class), X ∈ Rfreq.×channel×class×trial. It
consists of two lines: the upper one is for ’left’ class
and the lower one is for ’right’ class. We can find that
C3 channel (the upper part in one figure) of basis
vectors are higher power than C4 channel (the upper
part in one figure) for ’left’ class and vice versa for
’right’ class. These shows that ERD phenomenon has
the contralateral property (ERD means event-related
desynchronization, thus, it is correct that C3 channel
located on the left hemisphere has higher power than
C4 channel located on the right hemisphere).
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Fig. 4. The on-line classification result of Graz data.
x- and y-axis means time and classification accuracy,
repectively. The blue line shows the result across time
using NTF with 4-way tensor for time and the red line
shows the result using the Gaussian probabilistic model
for each time point.

25 50 75 100 125 150 175 200 225
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Fig. 5. Classification result across time. x- and y-axis
represents time and class, respectively. The black line
means true label and the points are classification result
of Viterbi algorithm. The classification accuracy is 85.62
%.

4.2. Classification results

For the Graz data, the maximum result across
time of 4-way NTF is 88.57 % at 5.36 sec that is
same with NMF. But the maximum result of 3-way
NTF is 81.51 %. From this, the sparse and discrimi-
native basis vectors as shown in Fig. 6 can find more
informative features and can improve the classifica-
tion accuracy.

An interesting result of NTF is for 4-way tensor
analysis that contains the temporal dimension (Ta-
ble 2). In Fig. , the blue thick line shows the result
across time when NTF with 4-way tensor (time) and
the Gaussian probabilistic model no considering the
temporal information are used. The red dotted line
shows the result when NMF and the Gaussian proba-
bilistic model combining the weight according to the
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Fig. 6. Basis vectors determined by NMF, NTF with 3-way tensor and NTF with 4-way
tensor (from top to bottom) and the number of basis r = 2, 4, 5, 6 (from left to right). In
each plot, top 1/2 is associated with C3 and bottom 1/2 is contributed by C4. In each of
those, the vertical axis represents frequencies between 4 and 30 Hz, the horizontal axis is
related to the number of basis vectors.
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error rate on each time point 26,25 are used. Although
the maximum result of NTF is less than the best re-
sult of NMF about 1 %, it shows that NTF can find
the weighted importance of basis vectors across time
automatically.

Table 3. Classification accuracy of IDIAP data

without Viterbi sub1 sub2 sub3 avg

NMF (α = 0) 75.34 39.63 38.53 51.17
NTF (3-way) 75.57 62.67 50.69 62.98
NTF (4-way) 77.63 65.67 52.52 65.27

with Viterbi

NMF (α = 0) 86.07 67.97 51.61 68.55
NTF (3-way) 85.62 69.35 53.44 69.47
NTF (4-way) 85.62 71.66 53.44 70.24

BCI comp. winner 79.60 70.31 56.02 68.65

Table 3 shows the classification results of IDIAP
data. It separates the results into ’with Viterbi’ and
’without Viterbi’ according to whether the Viterbi
algorithm is used or not. In the case of ’without
Viterbi’, we use the Gaussian probabilistic model.
The winner of BCI competition III use the canoni-
cal variates transform for feature extraction and the
DB discriminator working with an Euclidean met-
ric for classification. From the classification results
in Table 3, we can verify that the Viterbi algorithm
which considers the temporal dependency works very
well for continuous EEG classification. The transi-
tion probability Φ(ct, ct−1) in (12) is like this:

Φ =




0.9976 0.0005 0.0019
0.0024 0.9969 0.0007
0.0009 0.0020 0.9971


 .

The probability that transfer the same class is much
higher than others, this means that transition is not
random, but highly dependent on previous state. Clas-
sification result across time with Viterbi algorithm
for subject1 is shown in Fig. .

NTF with 4-way tensor that contains the class
information (70.24 %) is little better than one with
3-way tensor (69.47 %). Both methods are better
than the best result of BCI competition III (68.65 %)
5. The result of subject1 is always better than the
other, thus, we can say that the data set of subject1 is
more informative than one of the other subjects. For
subject1, the result of NMF is slightly better than
the one of NTF. But for the other subject, NTF is

better than NMF. Thus, we guess that NTF is more
robust than NMF to find the hidden patterns from
noisy training data.

5. Conclusions

We have presented an NTF-based method of feature
extraction and the Viterbi algorithm for continuous
EEG classification. Linear data model is convenient
for selecting discriminative spectral features without
the cross-validation several times. The NMF-based
method, linear data model with nonnegativity con-
straint, could find discriminative and representative
basis vectors (which reflected appropriate spectral
characteristics) without cross-validation, which im-
proved the on-line classification accuracy. In this
paper, we considered more general framework that
takes the multiway structure into account. NTF can
find the hidden structures for new dimension such as
time or class.

Continuous EEG classification can reduce the re-
striction of EEG experiment since it don’t need the
trial structure. The Viterbi algorithm can use the
classifier to infer the possible hidden labels from ob-
served data sequence. Our experiments show that it
could be applied to uncued EEG classification suc-
cessfully.
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