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Abstract

Ensemble independent component analysis (ICA) is a Bayesian multivariate data analysis

method which allows various prior distributions for parameters and latent variables, leading

to flexible data fitting. In this paper we apply ensemble ICA with a rectified Gaussian

prior to dynamic H15

2
O positron emission tomography (PET) image data, emphasizing its

clinical usefulness by showing that major cardiac components are successfully extracted in an

unsupervised manner and myocardial blood flow can be estimated in 15 among 20 patients.

Detailed experiments and results are illustrated.

Keywords: Bayesian learning, Independent component analysis (ICA), Myocardial blood flow

quantification, Positron emission tomography (PET).

1 Introduction

The dynamic H15

2
O cardiac positron emission tomography (PET) has been widely used for the

quantification of myocardial blood flow (MBF) [1, 17, 8, 7, 9, 21], since H15

2
O is an ideal blood

flow tracer, which is freely diffusible and has stable characteristics. The half life of H15

2
O is

about 2 minutes, which makes repetitive (more than 2 or 3 times) and short interval estimation

(every 10 minutes) of MBF possible. It is essential to extract the left ventricle input function for

the calculation of MBF in the tracer kinetics model of dynamic H15

2
O cardiac PET. However, it

is required to carefully determine the region of interest (ROI) for the precise extraction of the

input function, which is not an easy task because of the partial volume effect resulting from the

limitation of system resolution and the spill-over of left ventricle, right ventricle and myocardium

caused by the motion of heart. Consequently, a new method for the input function extraction

is required to estimate the blood flow more accurately.

Linear model-based methods, including factor analysis, principal component analysis (PCA),

independent component analysis (ICA) and nonnegative matrix factorization (NMF) methods,

have been used for the extraction of input function [1, 17, 15, 14]. In the framework of linear
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models, the goal is to learn basis vectors and associated encoding variables (latent variables),

given a set of data samples. When a linear model-based method is applied to the dynamic H15

2
O

cardiac PET, what are expected as successful results, are as follows. Learned basis vectors are

associated with the time-activity curves (TACs) which reflect activities of cardiac components

across the time and encoding variables correspond to major cardiac components such as left

ventricle, right ventricle, and myocardium.

Factor analysis assumes that encoding variables (that are known as factors in this case)

follow mutually independent Gaussian distributions and uncertainty (noise) is also Gaussian

and independent thereof. Under these assumptions, factor analysis finds a linear model that

best models the covariance structure of the data. PCA is closely related to factor analysis, the

goal of which is to determine principal directions that are associated with the largest eigenvectors

of the data covariance matrix. In contrast to factor analysis and PCA that are based on 2nd-

order statistics, ICA exploits either higher-order statistics or non-Gaussianity for data fitting,

assuming that latent variables are non-Gaussian as well as mutually independent, ICA finds a

linear model by maximizing the output entropy or minimizing the mutual information between

output variables. Various methods for ICA have been extensively developed. For example, see

[6, 4, 3] for reviews of ICA. Factor analysis and ICA were shown to be useful in extracting cardiac

components from dynamic H15

2
O cardiac PET [1, 17]. However, these methods often produce

negative values in a learned TAC, which is not desirable. On the other hand, nonnegative matrix

factorization (NMF) [12] imposes nonnegativity constraints on both basis vectors and encoding

variables. NMF was successfully applied to dynamic H15

2
O cardiac PET [15, 14], avoiding any

negative values in a learned TAC.

Ensemble ICA [19] is a Bayesian ICA where the linear generative model for ICA is optimized

over a parametric distribution that approximates the intractable true posterior distribution.
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Allowing various prior distributions for parameters and latent variables, leads to more flexible

data fitting and source separation. The main benefit of ensemble ICA over factor analysis, ICA,

and NMF, is its flexibility since various prior distributions for model parameters allow data

fitting as well as learning. With a rectified Gaussian prior, ensemble ICA seeks independent and

nonnegative components, which is desirable in our task. In this paper we apply ensemble ICA

to H15

2
O cardiac PET images that are acquired from 20 patients, in order to estimate MBF.

In contrast to our previous study involving PET scan of heart activity of dogs [1, 17, 14], we

investigate the usefulness of ensemble ICA in analyzing clinical data acquired from patients,

showing that ensemble ICA is a promising tool for medical image analysis. In this paper we

include more clinical study, elaborating further our earlier work [11] where ensemble ICA was

first applied to PET image data.

The rest of the paper is organized as follows. The next section describes details on exper-

iments and methods, such as PET image acquisition, image processing and analysis methods,

a quantification method involving regional myocardial blood flow (rMBF), and so on. Sec. 3

illustrates the clinical results with PET images acquired from 20 patients. Finally conclusions

are drawn in Sec 4 with a discussion of the results.

2 Materials and Methods

2.1 Materials

Dynamic H15

2
O myocardial PET was performed on 20 patients (15 male subjects that are 55

±10.8 years old and 5 female subjects that are 64 ±2.9 years old) who underwent gated 99mTc-

MIBI myocardial perfusion SPECT for the suspicious coronary artery disease. Images were

acquired at rest and during adenosine stress. Nine of the patients underwent angiography (3
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vessels for 4 subjects, 2 vessels for 3 subjects, and 1 vessel for 2 subjects).

2.2 SPECT and PET image acquisition

Gated myocardial SPECT images were acquired using the dual head SPECT camera (Vertex

EPIC, Philips-ADAC Labs, Milpitas, USA) with low energy high collimator. Images were re-

constructed using the filtered back projection method with ramp filter and butterworth(cutoff

frequency=0.33, degree=5) filter. ECAT EXACT47 (Siemens-CTI, Knoxville, USA) was used for

PET image acquisition. Transmission scan was performed during 4 minutes using 68Ga/69Ge,

and emission scan was performed at rest and adenosine stress state respectively. Totally 24

frames with 47 transaxial images were acquired; 12 frames for 5 seconds, 9 frames for 10 sec-

onds, and 3 frames for 30 seconds. After bolus injection of H15

2
O (555-740 MBq), adenosine stress

was carried out during 7 minutes. H15

2
O was injected after 3 minutes during stress, and then

dynamic PET images were acquired during 4 minutes continuously. Images were reconstructed

using FBP (image matrix = 128 × 128, magnification factor = 1.5)

2.3 Image processing

Because of a lot of background of dynamic heart image, all frame data was summed to make

a static image for axis reorientation. With this static image, short axis was determined for the

transformation of short axis image before summing the slices to increase the SNR of the images.

Determined short axis was applied to dynamic data reversely for transformation of all dynamic

data. Two planes of short axis images were summed in order to extract myocardium component

automatically using ensemble ICA (see Fig. 1). FIRE (Functional Image REgistration) software

was used for axis reorientation [18, 10], and ensemble independent component separation and

myocardial blood flow estimation was tested using Matlab software. Nine regions of interest
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(ROI) were drawn manually on left ventricle and myocardium (1 apex, 4 middle wall, 4 basal

wall) to take out the time-activity curve of dynamic PET image. Using the input function and

time-activity curve of each region, rMBF was calculated. The values of rMBF were compared

with angiography and gated myocardial perfusion SPECT. Regional perfusion was relocated to

the 9 regions used above in dynamic PET analysis.

Figure 1: (A) Dynamic H15

2
O PET image acquired using ECAT ECAT47 scanner. (B) Summed

static image. (C) Tissue component image obtained using ensemble ICA in this study (the

image was transformed to the short axis). Noise is present in dynamic image data (as shown

in (A) and static image data (as shown in (B)). However, component images (as shown in (C))

extracted by ensemble ICA clearly show myocardium.

2.4 Separation of factor images using ensemble ICA

H15

2
O PET images are converted to vector sequences D = {xt ∈ R

m}. ICA assumes that data

vectors xt are generated by

xt = Ast + ǫt, (1)
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where st ∈ R
n correspond to factor images (independent components), column vectors of the

matrix A ∈ R
m×n represent time activity curves, and ǫt ∈ R

m reflect the model uncertainty

which is assumed to be Gaussian.

In the context of H15

2
O PET images, the independent components that are expected to

appear correspond to left ventricle, right ventricle, myocardium, and background, which reason-

able satisfy spatial independence. In such a case, basis vectors (corresponding to the column

vectors of A) represent the time activity curves which reflect the time-varying influence in PET

images [21]. Standard ICA, including mutual information minimization, maximum likelihood

estimation (MLE), output entropy maximization, and so on (see [3] for recent review), takes

into account the prior probability of parameters in a limited way and neglects the uncertainty

term in (1). In standard ICA, parameters are inferred by maximizing the likelihood in the limit

of zero noise.

On the other hand, NMF [12] also considers the linear model (1) but infers parameters

through constraining both A and st to be nonnegative, whereas ICA imposes independence

conditions for st. Inference in NMF can also be illustrated in the framework of maximum

likelihood estimation, assuming Poisson distribution for ǫt [12]. Application of NMF to dynamic

PET can be found in [14].

Here we use ensemble ICA [19] to extract factor images in H15

2
O PET. In the Bayesian

framework, the posterior probability of parameters Θ, given a set of data points D, is described

by

P (Θ|D,H) =
P (D|Θ,H)P (Θ|H)

P (D|H)
, (2)

where H represents a model. In ensemble learning, the inference is performed by averaging

over the posterior distribution, so that the inference is sensitive to regions where the probability

mass is large, in contrast to ML or MAP where the inference is sensitive to regions where the
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probability density is large. In practice, exact inference is often intractable. Ensemble learning

finds an approximate posterior distribution Q for the model parameters by minimizing the

Kullback-Leibler divergence between the approximate posterior Q and the true posterior

KL[Q||P ] =

〈

log

[

Q(Θ)

P (Θ|D,H)

]〉

Q

=

〈

log

[

Q(Θ)

P (D,Θ|H)

]〉

Q

+ log P (D|H). (3)

where 〈·〉Q denotes the statistical expectation under an approximate distribution Q.

The following objective function J was considered in [19]

J = KL[Q||P ] − log P (D|H)

=

〈

log

[

Q(Θ)

P (D,Θ|H)

]〉

Q

≥ − log P (D|H). (4)

The minimization of the objective function J in (4) is equivalent to maximizing the lower-bound

on the log-evidence log P (D|H).

For tractable calculation, the approximate posterior distribution Q(Θ) is assumed to be of

factorized form,

Q(Θ) = Q(s)Q(θ), (5)

where s represents latent variables and θ is a collection of model parameters as well as hyper-

parameters. Each Q(s) and Q(θ) is further factorized, depending on parameters. Ensemble

learning (or variational Bayesian learning) determines Q(s)Q(θ) iteratively through EM-like

optimization where the variational E-step determines Q(s) which minimizes (4) given Q(θ) and

the variational M-step finds Q(θ) which minimizes (4) given Q(s). Detailed algorithms can be

found in [19].
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The main benefit of ensemble ICA is to decompose the PET images as a linear combination of

factor images with encoding variables being statistically independent as in ICA, while imposing

nonnegativity constraints on A and st through the rectified Gaussian prior. In other words,

ensemble ICA allows us to incorporate both independence and nonnegativity constraints in the

context of the linear model (1).

2.5 Quantification method

Perfusion information of rest and stress state in gated myocardial perfusion SPECT and diagnosis

results of angiography which were expressed as percentage according to territory were used for

this study. Correlation was evaluated between 9 regions for the measurement of rMBF twice.

The rMBF from H15

2
O dynamic myocardial PET were compared with the results of angiography

and perfusion SPECT. And image contrast between myocardium and left ventricle was estimated

in segmented myocardial independent component images.

2.6 Analysis of PET blood flow as the result of angiography

Stenosis of angiography is defined as ratio of narrowing diameter by intact diameter. From the

result of angiography, regions were divided according to their degree of stenosis (50%). The

regional SPECT perfusion and absolute blood flow of PET were compared with the results of

angiography regionally.

2.7 Comparison with myocardial perfusion SPECT

Regions were divided into two parts as the decrease of reversible blood flow. All regions were

selected according to the stenosis score(>50%) of angiography. Regional flow reserve (stress

MBF - rest MBF) were analyzed in each part, respectively.
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3 Results

3.1 Quantification of rMBF using ensemble ICA

Myocardium independent component images could be obtained in 15 among 20 subjects (see Fig.

2). The 5 subjects were excluded due to out of range (2 cases), imaging failure in stress (2 cases)

and low SNR for analysis (1 case). Image contrast of myocardium was 1 : 2.97 (LV:myocardium)

in rest image, 1 : 2.56 in stress image of separated independent component images. The number

of subjects with the image contrast under 2.0 was 6, and the highest value of image contrast was

4.63. Blood flow obtained from PET was 1.2±0.40ml/min/g in rest state, 1.85±1.12ml/min/g

in stress state. Reproducibility of myocardial blood flow of 15 subjects PET image data which

were acquired twice for each region was high (r = 0.99 and p < 0.0001 where r is the correlation

coefficient by paired t-test and p represents p-value which reflects statistical significance)

3.2 Analysis of PET blood flow as the result of angiography

A total of 83 segments from 9 patients who underwent coronary angiography were analyzed (see

Figs. 3 and 4). According to angiography findings, 17 segments were classified into normal

segments group, and 66 segments into stenotic segments group. The rMBF of normal segments

which was measured by water PET was 1.16 ± 0.36ml/min/g in rest, 3.15 ± 1.15ml/min/g in

stress. Blood flow reserve of normal segments group was 2.00 ± 1.05ml/min/g. 66 segments

were classified into stenotic segments group.

The rMBF of stenotic segments group was 1.06±0.37ml/min/g in rest, 1.97±1.21ml/min/g

in stress, and blood flow reserve was 0.91 ± 1.62ml/min/g. The blood flow reserve of stenotic

segments group was significantly lower than normal segments group (p < 0.05). Myocardial

perfusion was quantified by autoQuant program. Uptake value of normal segments group were

67.6± 13.3% in rest and 65.7± 12.3% in stress (reversibility score = 1.9), while that of stenotic
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Figure 2: Independent component images from 60-year-old male with triple vessel disease. Short

axis image of (A) (B) (C) from base to apex were displayed associated with cardiac components:

(A) right ventricle; (B) left ventricle; (C) myocardium.

group were 71.9 ± 9.8% in rest and 69.1 ± 12.8% in stress (reversibility score =2.8). There was

no significant difference between normal group and stenotic group in terms of reversibility score.

3.3 Comparison of MBF by myocardial perfusion SPECT and PET

We analyzed rMBF according to uptake value of myocardial perfusion SPECT. Among 66

stenotic segments, 19 segments showed high reversibility score (> 7, reversible segments), and

45 segments showed low reversibility score (≤ 7, persistent segment) in myocardial perfusion

SPECT. The rMBF of reversible segments were 0.98±0.30ml/min/g in rest, 1.78±0.76ml/min/g

in stress, and blood flow reserve was 0.80± 0.69ml/min/g. The rMBF of persistent segments in

myocardial perfusion SPECT was 1.10 ± 0.40ml/min/g in rest, 2.06 ± 1.35ml/min/g in stress,

and blood flow reserve was 0.95± 1.32ml/min/g. The blood flow reserve of reversible segments
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Figure 3: Absolute myocardial blood flow values measured using H15

2
O PET at rest and during

stress according to stenosis states. Perfusion reserve (stress blood flow - rest blood flow) was

significantly different between the segments with and without stenosis (p < 0.01).

was tended to be lower than that of persistent segments, but p > 0.05 there was no statistical

significance.

4 Conclusions

Various efforts have been made to separate cardiac components from dynamic H15

2
O heart PET

images [1, 17, 15]. In earlier study, we have successfully separated independent components in

the animal study (dogs) using micro sphere and the natural gradient ICA method. However,

major cardiac components were difficult to be extracted from clinical PET data by the conven-

tional ICA, because of the difference of injection dose according to weight and low sensitivity

of hardware system. Recently, left ventricle and myocardium images were visualized by NMF

in the case of clinical patients’ data. The MBF of patients could be estimated using NMF
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Figure 4: Correlation of relative myocardial uptake measured using 99mTc-MIBI SPECT and

stenosis state. There was no significant difference in SPECT perfusion reversibility score between

segment with stenosis and that without stenosis.

[15, 10, 16, 5], showing that the nonnegativity constraints are appropriate for nuclear science

image analysis. However, the contrast and image quality were still not satisfactory enough to

draw ROI on myocardium [15, 10].

Ensemble ICA allows us to impose nonnegativity constraints as well as independence condi-

tions, on latent variables, leading to more flexible data fitting. We have applied ensemble ICA

to the clinical PET data, showing that the image contrast and quality were improved for ROI

processing, compared to NMF (see Fig. 5). Myocardial blood flow distribution obtained in this

study corresponded to the known distribution [7, 9, 21, 5, 20, 2, 13].

We have shown that myocardial blood flow could be measured in a non-invasive manner from

the time-activity curve of left ventricle and myocardium in H15

2
O dynamic cardiac PET. We have

demonstrated that rMBF measured by water PET could be applied to assess absolute myocardial

blood flow. Flow reserve measured by water PET was significantly decreased in angiographically
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Figure 5: Component images associated with myocardium, that are computed from PET images

taken from a 57-year-old female patient with coronary artery disease, are shown in the case of

ensemble ICA (A) and NMF (B). Image contrast is improved using ensemble ICA, compared to

NMF. Pictorial illustration in the bottom, where short axis images of heart from base to apex

are displayed, depicts simplified cardiac components such as right ventricle, left ventricle, and

myocardium, in order to emphasize that myocardial component images computed by ensemble

ICA in this case clearly shows its structure, compared to ones determined by NMF.

stenotic segments compared with normal segments. However, myocardial perfusion SPECT did

not show such difference of reversibility score between stenotic and normal segments, which is

thought to be due to limitation of relative uptake. Our results were correlated with well-known

findings that PET is a better method to assess myocardial perfusion than myocardial perfusion

SPECT. In conclusion, rMBF was estimated using ensemble ICA in H15

2
O dynamic myocardial
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PET. We suggest that ensemble ICA incorporating non-negative constraint is a feasible method

to handle dynamic image sequence obtained by the nuclear medicine techniques. Reproducibility

of measurement and image contrast were good enough to segment myocardium. We expect that

dynamic myocardial PET analysis using ensemble ICA can be used to assess absolute myocardial

blood flow in clinical situations.
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