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A A game between two players
A Discriminator D
A Generator G

A Purpose of Discriminator

A Trying todiscriminate
whetherthis sample is from data distribution or generator G

A Purpose of Generator

A Trying togenerate
sampleghat discriminator can not distinguish from data distribution



A Zerosum game
A The discriminator D receiveg (D, G) as its own payoff
A The generator G receivesV (D, G) as its own payoff

A D tries to maximizeV (D, G) and G tries to minimize/ (D, G)

A Minimax objective function

min MaxV (D, G) = Expy,ra(x) 108 D (X)] + Egrop, (2) [l0g (1 — D (G (2)))]

A

Discriminator maximize 5Aa ONJR Y A Yt (2NQ& | oA ADRA YAY I (2N
to recognize data as being real to recognize generator sample
as being fake

Generator minimize



A Learning a joint distribution of muldomain images
A The images of the same face with differentributes
A The images of the same scene in different modalities(color and depth ilhages

-

A How?
A Deep neural networks learn a hierarchical feature representation
A Corresponding images in two domastsarethe same highlevel concepts




Architecture ofCoGAN
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CoGAN

A Obijective function oCoGAN

max min V(f1, f2,91,92), subjectto 6 o =80 ), fori =1,2,...,k
g1,92 fi1,f2 91 9z

0 (n1—3j) — 0 (no—3) 4 fOI‘j = 0, 1, ...,l —1
1 2

where the value function is given by
V(f1,f2:91,92) = Exi~px, [—10g f1(x1)] + Eznpy [~ log(1 — f1(91(2)))]

+ EX2~px2 |—log fa(x2)] + Errpy [—1log(1 — f2(g2(2)))].

A It doesnot rely onsamples drawn from the joint distribution
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Figure 2: Left (Task A): generation of digit and corresponding edge images. Right (Task B): generation of digit

and corresponding negative images. Each of the top and bottom pairs was generated using the same input noise.
We visualized the results by traversing in the input space.
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Figure 4: Generation of face images with different attributes using CoGAN. From top to bottom, the figure
shows pair face generation results for the blond-hair, smiling, and eyeglasses attributes. For each pair, the 1st
row contains faces with the attribute, while the 2nd row contains corresponding faces without the attribute.



Weight Sharing Experiments

Task A: pair generation of digit and edge images Task B: pair generation of digit and negative images
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Figure 3: The figures plot the average pixel agreement ratios of the CoGANs with different weight-sharing
configurations for Task A and B. The larger the pixel agreement ratio the better the pair generation performance.
We found that the performance was positively correlated with the number of weight-sharing layers in the
generative models but was uncorrelated to the number of weight-sharing layers in the discriminative models.
CoGAN learned the joint distribution without weight-sharing layers in the discriminative models.



Unsupervised Domaiidaptation

Method (171 [18]  [19]  [20] CoGAN
From MNIST
to USPS 0408 0467 0478 0.607 | 0.912 +0.008
From USPS
to MNIST 0.274 0355 0.631 0.673 | 0.891 +0.008
Average 0.341 0411 0.554 0.640 0.902

Table 1: Unsupervised domain adaptation performance comparison. The
table reported classification accuracies achieved by competing algorithms.
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A Learning inference network(encoder) and
generative network(decoder) in a GAlke framework

A Discriminator is trained to distinguish between joint samies)
A The encoder joint distribution(x, z) = ¢(x)q(z|x)
A The decoder joint distributiorp(x, z) = p(z)p(x|z)

A Generator learns conditionalgz|x) andz) to fool discrimi
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A Obijective function of ALl
min max V(D, G) = Ey(g)log(D(z, Gz ()))] + Ep(z) [log(1l — D(G4(2), 2))]

o ~ [[ at@a(z | 9)108(D(@. 2))dedz
// p(a | 2)log(1 — D(x, z))dzdz

A Just like original GAN, under the assumption of an optimal discriminator,
the generator minimizes the JS divergence betwedr, z) and ¢ (x, z)



CIFARLO Experiments
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(a) CIFARI10 samples. (b) CIFARI1O0 reconstructions.

Figure 2: Samples and reconstructions on the CIFAR10 dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions (e.g.,
second column contains reconstructions of the first column’s validation set samples).



SVHN Experiments
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