

Stochastic Neural Networks For HRL

Carlos Florensa, Yan Duan, Pieter Abbeel Conference paper at ICLR 2017

Youngseok Yoon

Before beginning...

- Meta Learning Shared Hierarchies
 - https://sites.google.com/site/mlshsupplementals/

Contents

- 1. Methodology
 - 1) Constructing the pre-training environment
 - 2) SNN (Stochastic Neural Networks)
 - 3) Information-Theoretic Regularization
 - 4) Learning High-level policies
 - 5) Policy Optimization
- 2. Experiment and Result
- 3. Discussion and Future Work

1.1) Constructing the pre-training env

- Letting the agent freely interact with the environment in a minimal setup.
- Rather than setting different reward to the desired skills, use generic single reward as the only reward signal to guide skill learning.
- But it is inefficient that training each policy from scratch.
- So,
 - First issue: using Stochastic Neural Networks as policies
 - Second issue: adding an information-theoretic regulrizer.

1.2) SNN (Stochastic Neural Networks)

 To learn several skills at the same time, propose to use Stochastic Neural Networks (SNNs).

Use simple categorical distributions with uniform weights for

the latent variables.

• K is the hyper parameter that upper bounds of #skills.

Allows flexible weight-sharing.

Feedforward Neural Network

Feedforward Neural Network $s = z \sim Cat(\frac{1}{K})$ (a) Concatenation

(b) Bilinear integration

Figure 1: Different architectures for the integration of the latent variables in a FNN

• To further encourage the diversity of skills learned by the SNN, introduce an information theoretic regularizer.

1.3) Information-Theoretic Regularization

- Add an additional reward bonus:
 - Mutual information (MI) between latent variable and current state.
- Let current state as c = (x, y), center of mass of mobile robot,
 - MI: I(Z; C) = H(Z) H(Z|C)
 - H(Z) is constant, since pdf of Z (latent variable) is fixed in training.
 - $H(Z|C) = -\mathbb{E}_{z,c} \log p(Z = z|C = c)$, so
 - $R_t^n \leftarrow R_t^n + \alpha_H \log \hat{p}(Z = Z^n | c_t^n)$, n denote estimating factor.
 - Also, to estimate \hat{p} , calculate $m_c(z)$ how many time cell c is visited during latent code z is sampled.
 - $\hat{p}(Z = z | (x, y) \sim \hat{p}(Z = z | c) = \frac{m_c(z)}{\sum_{z'} m_c(z')}$

1.4) Learning high-level policies

- How to use learned K skills that is learned during pre-training.
- Freeze them and training high-level policy, that operates by selecting a skill for a fixed step T.
- The factored representation of the state space S^M : S_{agent} and S^M_{rest} .

Figure 2: Hierarchical SNN architecture to solve downstream tasks

1.5) Policy Optimization

Algorithm 1: Skill training for SNNs with MI bonus

```
Initialize: Policy \pi_{\theta}; Latent dimension K; while Not trained do

| for n \leftarrow 1 to N do
| Sample z_n \sim \operatorname{Cat}\left(\frac{1}{K}\right);
| Collect rollout with z_n fixed;
end

| Compute \hat{p}(Z = z | c) = \frac{m_c(z)}{\sum_{z'} m_c(z')};
| Modify R_t^n \leftarrow R_t^n + \alpha_H \log \hat{p}(Z = z^n | c_t^n);
| Apply TRPO considering z part of the observation;
end
```


- Experiments
 - In benchmark by Duan et al. (2016)

 Benchmarking deep reinforcement learning for continuous control.
 - Locomotion + Maze and Locomotion + Food Collection
 - S_{agent} : the robot
 - S_{rest}^{M} : task specific attributes (walls, goals, and sensor readings)

Figure 3: Illustration of the sparse reward tasks

- Locomotion Experiments
 - Solely reward speed.
- Skill learning in pre-train (visitation plots in swim learning environment)

(d) SNN with bilinear integration and increasing $\alpha_H = 0, 0.001, 0.01, 0.1$ Figure 4: Span of skills learn by different methods and architectures

- Hierarchical use of skills
 - a. Exploration drawn from Gaussian (Duan et al. (2016))
 - b. It train six policies independently. The policies heavily concentrates on up-down ward.
 - c. d. yields a wider coverage of the psace.

Figure 5: Visitation plots for different randomly initialized architectures (one rollout of 1M steps). All axis are in scale [-30,30] and we added a zoom for the Gaussian noise to scale [-2,2]

- Mazes and Gather tasks
 - To better baseline, adding to the CoM proxy reward in pre-training.
 - a. b. c.
 poor performance, due to
 the long time-horizon needed to reach the goal.
 Furthermore, the proxy reward alone does not encourage diversity.

Figure 6: Faster learning of the hierarchical architectures in the sparse downstream MDPs

Figure 6: Faster learning of the hierarchical architectures in the sparse downstream MDPs

- Mazes and Gather tasks
 - d. To fairly compare, experiment in exact setting, maximum path length of 500 and batch-size of 50k.

Figure 7: Results for Gather environment in the benchmark settings

Figure 7: Results for Gather environment in the benchmark settings

http://bit.ly/snn4hrl-videos

- Analysis of the switch time T
 - a. b. more frequently switch, more better in gather task.
 - c. d. no meaningful difference in maze task.

Figure 11: Mild effect of switch time \mathcal{T} on different sizes of Gather and Maze 0

Figure 11: Mild effect of switch time \mathcal{T} on different sizes of Gather and Maze 0

• Ant

Figure 13: Ant

- Ant
 - Skill learning in pre-train

Figure 14: Pretrain visitation for Ant with different MI bonus

- Ant
 - Failure modes for unstable robots.

Figure 15: Failure mode of Ant: here 5 rollouts terminate in less than 6 skill switches.

3. Discussion and Future works

 The bilinear integration and the mutual information bonus are key to consistently yield a wide, interpretable span of skills.

Limitations

- the switching between skills for unstable agents (ant).
- Having fixed sub-policies and a fixed switch time T.
- Only use feedforward architectures.

Thank you!