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« Meta Learning Shared Hierarchies
* https://sites.google.com/site/mlshsupplementals/
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1. Methodology
1) Constructing the pre-training environment
2) SNN (Stochastic Neural Networks)
3) Information-Theoretic Regularization
4) Learning High-level policies
5) Policy Optimization
2. Experiment and Result

3. Discussion and Future Work
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« Letting the agent freely interact with the environment in a
minimal setup.

 Rather than setting different reward to the desired skills, use
generic single reward as the only reward signal to guide skill
learning.

* But it is inefficient that training each policy from scratch.

* SO,
* First issue: using Stochastic Neural Networks as policies
« Second issue: adding an information-theoretic regulrizer.
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 To learn several skills at the same time, propose to use
Stochastic Neural Networks (SNNs).

 Use simple categorical distributions W|th uniform weights for
the latent variables.

K is the hyper parameter that . . 5.
upper bounds of #skills. ;
(a) Concatenation (b) Bilinear integration

® Al | OWS fl eXi b | e We i g ht— S h a ri n g . Figure 1: Different architectures for the integration of the latent variables in a FNN

* To further encourage the diversity of skills learned by the
SNN, introduce an information theoretic regularizer.
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« Add an additional reward bonus:
« Mutual information (MI) between latent variable and current state.

* Let current state as ¢ = (x,y), center of mass of mobile robot,
« MI: 1(Z;C) = H(Z) — H(Z|C)
« H(Z) is constant, since pdf of Z (latent variable) is fixed in training.
* HZ|C) = —E,  logp(Z = z|C = c), sO
* R} « R + aylogp(Z = Z™|cl), n denote estimating factor.
* Also, to estimate p, calculate m.(z) - how many time cell c is visited
during latent code z is sampled.

« D(Z = z|(x,y) ~ P(Z = z|c) = =&

Yzrme(z2r)
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« How to use learned K skills that is learned during pre-training.
* Freeze them and training high-level policy, that

operates by selecting a skill for a fixed step T. 2
» The factored representation of the state Tl
space SM: S, ene and St o

Network
| 1
M Ny M
(Smgefnt, Srest) — 8

Figure 2: Hierarchical SNN archi-
tecture to solve downstream tasks
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Algorithm 1: Skill training for SNNs with MI bonus
Initialize: Policy ms: Latent dimension K
while Nor trrained do
formn +— 1to N do
Sample z, ~ Cat(4):
Collect rollout with z, fixed;
end

Compute (2 = z|c) = —U—E:‘;;z;};

Modify R} « R} + an logp(Z = 2"|c}):
Apply TRPO considering = part of the observation;
end
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« Experiments

* In benchmark by Duan et al. (2016)
Benchmarking deep reinforcement learning for continuous control.

 Locomotion + Maze and Locomotion + Food Collection

* Sagent- the robot

- SM .. task specific attributes (walls, goals, and sensor readings)

(c) Maze 2or 3 (d) Food Gather
Figure 3: Illustration of the sparse reward tasks
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* Locomotion Experiments

* Solely reward speed. |
B -

« Skill learning in pre-trai
. I . e.a rn I n I n . re tra I n {a} Independently trained policies in the pre-train MDP with the proxy (b} Superposed policy
ard of the CoM speed /isitations from (a)

(VISItatlon plots In reward of the ColM speed norm visitations from (a

swim learning environment) i i i i

(c) SNN without bilinear integration and increasing ey = 0,0.001,0.01,0.1

(d) SMNN with bilinear integration and increasing oy = 0, 0.001,0.01,0.1

Figure 4: Span of skills learn by different methods and architectures
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* Hierarchical use of skills
a. Exploration drawn from Gaussian (Duan et al. (2016))
b. It train six policies independently.

The policies heavily conce- _ -
ntrates on up-down ward. -u - o
c. d.yields a wider coverage - ‘ .

Of th e psa Ce. (a) Gaussian noise with (b) Hierarchy with {c) Hierarchy with (d) Hierarchy with
covariance & =T Multi-palicy Bil-SNN ag =0 Bil-SNN oy = 0.01

Figure 5: Visitation plots for different randomly initialized architectures (one rollout of 1M steps).
All axis are in scale [-30,30] and we added a zoom for the Gaussian noise to scale [-2,2]
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» Mazes and Gather tasks
» To better baseline, adding to

the CoM proxy reward in

pre-training. )

a. b.c (a) MazZO (b) M'tzel
poor performance, due to -
the long time-horizon need- .- %7
ed to reach the goal. E
Furthermore, the proxy rew- ;"
ard alone does not encour- S
age diversity. e S T

(c) Aggregated results for Mazes 2 and 3 (d) Gather task

Figure 6: Faster learning of the hierarchical architectures in the sparse downstream MDPs
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 Mazes and Gather tasks

d. To fairly compare, T
experiment in exact set- i Mo nmaton
ting,
maximum path length
of 500 and
batch-size of 50k.
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Figure 7: Results for Gather environment in the benchmark settings
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Figure 7: Results for Gather environment in the benchmark settings
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* http://bit.ly/snn4hrl-videos
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 Analysis of the switch time T

a. b.
more frequently switch, more
better in gather task.
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Figure 11: Mild effect of switch time 7 on different sizes of Gather and Maze 0
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 Ant

Figure 13: Ant
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2. Experiments and Results

* Ant
« Skill learning in pre-train

apg = 0.0001 ap = 0.01

Figure 14: Pretrain visitation for Ant with different MI bonus
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2. Experiments and Results

e Ant
e Failure modes for unstable robots.

latent: 2

latent: 1

latent: 0

No visitation

Figure 15: Failure mode of Ant: here 5 rollouts terminate in less than 6 skill switches.
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 The bilinear integration and the mutual information bonus

are key to consistently yield a wide, interpretable span of
skills.

* Limitations
« the switching between skills for unstable agents (ant).
« Having fixed sub-policies and a fixed switch time T.
« Only use feedforward architectures.






