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The Universality in Meta-Learning

« What Is the universality in Meta-Learning?

 Universality in Neural Network:
Approximate any function f:x -y

« Universality in Meta-Learning:
Approximate any function f:((x,y),, x*) =
Input: The training data (x,y),, and Test data x*.
In this presentation, only show about k =1 case.

e Our model to verify Universality:
MAML: f(;0) > f(;6"),0' =0 —a - VQL(target,f(-; 0) )
Update model f(-; 8) using gradient update
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Model Construct (Pre-update)

* Our model: Deep neural network with ReLU, MAML training.

o] fo-o] el o
Q;('; éfrta 9;) - WN Wl B f out( ou:)

Figure 1: A deep fully-connected neural network with N+2 layers and ReLU nonlinearities. With this generic
fully connected network, we prove that, with a single step of gradient descent, the model can approximate any
function of the dataset and test input.
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Model Construct (Pre-update)

« Construct model f(-;0) with ReLU

e If we assume inputs and all pre-synaptic activations are non-
negative, then deep RelLU act like deep linear networks. --- (1)

* f(50) = four ((Hliv=1 Wi) (s 65e, 0); H"”t)

X . f(-;@) - Z v
o tor oo to [
(5('; ;taeg) - WN Wl - fout( ou;)
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Single gradient step and Post-update

° VWlL — aibl’lr—l
a;. the error gradient with respect to the pre-synaptic
activations at layer i
b;,_,: the forward post-synaptic activations at layer i — 1

=

forward Wi Wi Wig -
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Single gradient step and Post-update

e let z = ([T, W) (x5 654, 6,), V,L = e(x, )
e Then,
Vi, L = aibi_,
T
— WiT_l WlTe(x; J’) ) ((Hy=i+1 VV])(]’)(X, Hft' 9b)2
- T T
= (IT;21W)) e(x,¥) - ¢(x5 651, 65) ([1j<i41 W))
o= @ =
b1 i

Y
forward

O O
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Single gradient step and Post-update

e let z = ([T}, Wi)d(x; 65, 6p), VL = e(x,y)
* Then,

Vv, L = aibiT—1
T
= WiT—1 WlTe(x, y) - ((H?’:iﬂ W}-)cl)(x; Hft' Hb)2
. T T
= ([I;21W)) e(x,y) - d(%; 671, 65) (TT}=i41 W))

e Therefore, stt—updateTvaIue of H{-V:lTWi’ = H’iV:Tl(Wi —a-Vy,L)
Iiv=1 W; — “Z?]:l(n;_:ﬁ W])(Hs;ﬁ W]) e(x,y) - ¢(xi Ot Hb) (Hy=i+1 W]) (H§;11 VV]) — 0(a?)
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Single gradient step and Post-update

e Post-update value of [TL, W/ =[I"L,(W; — a - VW%L)
Ly Wi =z, (G2 W) (T2 W) e 3) - 6(x: 676,05) (TT-isa W) (TT25 W)) - 0(a?)
« Now, post-update value of z* when x* input into f(-;6")
z" =12, Wi ¢(x"; 67, 6p)
=TT, Wi (x7; 671,65
~axll, (2 W) (T2 W) e(e ) - (670, 65) (s W) (T15Z3 W) b5 6, 6)

* And, f(x*} 0') = fout(Z2"; Oout)
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Show universality from model

« How to show universality from post-updated model?

o tor oo to [
(000 WAmW] four(i o)
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Show universality from model

« Use independently control information flow from x, from y, from x*
by multiplexing forward information from x and backward information
from y

* Decomposing W;, ¢ and error gradient into three parts,

W, 0 0 B(+ 0, 0p) ) (0 |
Wi=lo W ol ¢G6u8)=| o | BLxO)=|E0)|-@
0 0 W 6, ()]
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Show universality from model

x | O, 0p Wy Wi Wi 4 four |¥
U
¢ | Wy W Wy |z
X th, 9b 0 WN Wi Wl z fout 5\’
B o, | Wy W, W, |2
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Show universality from model

* Then, before the gradient update,
B l] B ?:1 Wi&(xi Ort) 0p)

0
* Hence, represent the middle one of after gradient update, z*

N¢ NI N

0

~ ~ T
Wi 0 0][e(x; 65 65) w00 w00 0
=TI |0 W, o 0 —azL [ [I521]0 W, o0 [I=ijo W, o e(y)|-
0 0 W O ) 0 0 W 0 0 wf/ [¢D)
&(x;05,0,)] w; 0 0 W 0 0|\ [¢(x 60,65
0 Lealo W oof] (Mo W o 0
6, 0 0 W 0 0 0,

27 = ezl (N W) (23 W) 20 - @ (x; 65, 66) (T=ia W) (T3 )65 61, 63)
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Show universality from model

V = fout(Z;0pye) andz = 0

POSTELOCH .

X

= —azl,(

—az)l 1 A;e()P(x; 0f,, eb) B! B;p(x*; 654, eb)

x*

Hftl Qb

i—1
i1 W

H;t, 0,

F==]

)

F== |

i—1
11WJ

M

IN< NI NzI

)" &) - (x; be, eb) (H L W) (

M

- (3)

Il\]< NI NII
* * *

f out

i—1
=1 W

fout

<2

)$(x"; 67, 65)

<2
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Show universality from model

e Path 1)

e Define f,,;

e Path 2)

« Show z* as new vector v, which containing informations of x, y and x*

At last,
« Universality with Vector v

rPoOsSTECH Machine Learning Group



Show universality from model

* Define f,,; as a neural network that approximates the following multiplexer function and its
derivatives

fout ([ ] out) z ngre< z >+ 1z¢0hpost(z Hh) ( )

» Where g, is a linear function with parameters 6, such that £ = e(y) --- (2)

* Where h,,s; is a neural network with one or more hidden layers.

N

e Then, after pose-update,

Z
* fout ([2*] ) éut) = hpost(Z*; Op), -+ (5)"
S

$ | Wy W, w2,
x| 64,65 0 | Wy W; wy |z | T |
6, | W 7 2 Al
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Show universality from model

e Change the form of z* with kernel form
=% — T T T A% / \T — *
o 7" = —aZL A (V) P(x; 0, 6,) B Bip(x*;6f,0p) = —aZil A e(y)k;(x,x*)

« ¥ = —aXN  A;e(y)k;(x, x*) has the all information of x,y and x*.
« Assume e(y) is a linear function of y which can extract the original information y.

¢ | Wy W; w, |z* g
! 7 7 A7 — re A~
x* | 0,0y |0 | Wy w; w, |z* hp y
6, | wy W; W, |z post
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Show universality from model

e Change the form of z* with kernel form
« 7" = —aZl A2y P(x; 05, 0,) BT B, (x"; O+, 6;) = —azil, Ae(y)k;(x, x")
« ¥ = —aXN  A;e(y)k;(x, x*) has the all information of x,y and x*.
« Assume e(y) is a linear function of y which can extract the original information y.

e Idea 1)

« Decompose index i =1,...,N to a product of j =0, ..,J]—1andl=0,..,L —1,
and then assign those to x and x*

e Idea 2)

» Discretize x and x* to j and [ by kernel k()

e Idea 3)

« Make new vector v, which contain all information of x,x* and y from A;,é(y) and k;
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Show universality from model

e Idea 1)

 Decompose index i =1,...,N to a product of j =0,..,J—1andl=0,..,L —1,
and then assign those to x and x*

o 7" = —aXL Ae(ki(x,x7) = —aZi_ Tt Ape()k (x, x7)
e Idea 2)

» Discretize x and x* to j and [ by kernel k()

. 1 if discr(x) = e; and discr(x™) = e
- jk(x,x)={0 fdiser(x) = ¢ ) =e (6

otherwise
s A7 A7 A7 ~ %
P* Wy Wi Wi Zz Gpre
14 14 ¥y e e f—
x" | O¢,0p |0 Wy W; w, |z* n
9,’, Wy w; Wy zZ* post
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Show universality from model

e Idea 3)

« Make new vector v, which contain all information of x,x* and y from A;,é(y) and k;
* Choose é(y) to be a linear function that outputs ] * L stacked copies of y

E cee E
* Define Aj;; to be a select y at the position of (j,[) =j+ ] * L, Aj; = [ 1+e€ E], 1 + € at position (j, 1)
E cee E
e As aresult,
. 7' = —aZﬁilAie'(y)/&\(x, x*) = —azjz‘(}zf;OlAﬂe‘(y)kﬂ(x, x*)
0
=v(x,xy)~|Y
0
\0/ ¢ | Wy W; w, |z
* H’ 9[ O W W W —x gpre A~
X ftr9b N i 1 |Z h y
0; w w; w zZ" post
b N i 1
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Show universality from model

e As aresult,
7' = —aZl AWk (x,x7) = —aZ{T  T{T 4@k (x, x7) = —av(x, x7, y),

()

where v(x, x*,y) ~

i A=)

\

* - f(x*; 0') ~ hpost(_av(x: x*,y); 0n)
* It is a universal function approximator with respect to its inputs (x,x*,y)

&1 W, W, w ],
/ / oy ¥y = — pre | ~
x| 05,6, |0 Wiy W; (T A Y y
0 ! ~ ~ ~ v % post
b Wy W; Wy,  |Z
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Experiments

* Q1) Is there empirical benefit to using one meta-learning approach
versus another, and in which case?

* A1) Empirically show the inductive bias of gradient-based vs recurrent
meta-learners

» Explore the differences between gradient-based vs recurrent
« A learner trained with MAML, improve or start to overfit after additional gradient steps.
« Better few-shot learning performance on tasks outside of the training distribution?
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sine, in-distribution, A = [0.1,5.0], y &[0, ] sine, amplitude extrapolation, A =[5.0,10.0] sine, phase extrapolation, y & [n, 2r]

o o o
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Figure 2: The effect of additional gradient steps at test time when attempting to solve new tasks. The MAML
model, trained with 5 inner gradient steps, can further improve with more steps. All methods are provided with
the same data — 5 examples — where each gradient step is computed using the same S5 datapoints.

" Omniglot with varying diqgit shear . Omniglot with varying digit scales _ ginusoid regression with varying amplitude
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Figure 3: Learning performance on out-of-distribution tasks as a function of the task variability. Recurrent
meta-learners such as SNAIL and MetaNet acquire learning strategies that are less generalizable than those
learned with gradient-based meta-learning.
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20-way, 1-shot Omniglot learning curves

Sy 100
o S0 e e ——— = ——
©
Experiments
L]
@
E‘ )
i~
v — MAML init, train
— 40 o
s |, ———— - MAML init, test
/ . ]
g 204 = rznd init, train
=) - = rand init, test
(|
3 p P o o .

number of gradient steps

Figure 4: Comparison of finetuning
from a MAML-initialized network and
a network initialized randomly, trained
from scratch. Both methods achieve
about the same training accuracy. But,
MAML also attains good test accu-
racy, while the network trained from
scratch overfits catastrophically to the
20 examples. Interestingly, the MAML-
initialized model does not begin to over-
fit, even though meta-training used 5
steps while the graph shows up to 100.
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Experiments

* Q2) Theory suggest that deeper networks lead to increased expressive
power for representing different learning procedures. Is it right?

* A1) Investigate the role of model depth in gradient-based meta-
learning
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Experiments

Task-conditioned, fixed parameter count MAML, fixed parameter count

number of hidden layers number of hidden layers
Figure 5: Comparison of depth while keeping the number of parameters con-

stant. Task-conditioned models do not need more than one hidden layer,
whereas meta-learning with MAML clearly benefits from additional depth.
Error bars show standard deviation over three training runs.
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Conclusion

» Meta-learners that use standard gradient descent with a sufficiently deep representation can
approximate any learning procedure, and are equally expressive as recurrent learners.

 In experiments, MAML is more successful when faced with out-of-domain tasks compared to
recurrent model

« We formalize what it means for a meta-learner to be able to approximate any learning
algorithm in terms of its ability to represent functions of the dataset and test inputs.
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Appendix

e A
* we assume inputs and all pre-synaptic activations are non-negative, then deep RelLU act like deep linear networks.

(1)
e ZF ——aZN1(H W)(Hl 1W) e(y) - ¢(x gftrgb) (H] l+1W) (H VI/J-)qS(x*;H}t,H{,)
= —azL A;iey)P(x; bfe, 9,,) B! B¢ (x*; 64, 9,,) - (3)

0
= e‘(y)‘ -+ (2)
é(y)

z z A
Z] out) - z 0dpre ( z|; 9g> + 1Z'¢thost(2; eh); (4)' fout <[ ] 9<’)ut> = hpost(Z*; Hh)' (5)*
Z Z z"

N

. (6)

(X, x") = {1 if discr(x) = ¢; and. discr(x*) = ¢
0 otherwise
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Appendix A

T T

i—1 i—1 N i—1
- 7 7 =~ 1 T A7 A7 T % / /
z' = —aXll, ‘ ‘Wj ‘ ‘Wj e(y) - ¢(x; 6¢¢, 6p) ‘ ‘ W, i | (x5 67, 65)
j=1 j=1 j=i+1 j=1

= T T T * / \T
= —a2{L; A () P(x; 671, 6) BI Bip(x; 07, 60)
« Choose all W; and W; to be a square and full rank.

* Set W; = M;M ;4 and W; = M;_; M; then [T=is1 W) = Myyq, 3;11'/]7] =Mi_y My4q =1,
Mo =1I)

e Set Al = I,Ai = 1\711-_11\7117"_1 and Bi = Ml'+1'BN =1
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Appendix A

 All inputs are non-negative:

* Input ¢ consist of three term, (discretization, constant 0, 0 before update and not used
afterward)

« All inputs are non-negative before and after update.

 All pre-synaptic activations are non-negative:
o It is sufficient to show that products of W, ?’zj W; (1 <j < N) are positive semi-definite.
* So, show that [T).; W;, ITiL; W, TIiL; W; (1 < j < N) are positive semi-definite.
* We define [I)L; W; = M;4; = B;, and B, is set to be a positive definite.

« We define W; = M;_;M; where 4; = M;_;M;_;, so each M; is also symmetric positive definite
and W; is positive definite.

« Purpose of w; is to provide nonzero gradient to the input 6,, thus positive value for each
w; will suffice.

rPoOsSTECH Machine Learning Group



Appendix B

o o
£(7.f(:0)) = 0@ 7,L(7,f(:6)) = V,f (x:0) - V5L(7,9) = °w)
€] ),

f(x' 0) = fout(z' Oout) = gpre(Z; Hg)
 Because we assume g, re as a linear function of 6,,
let gpre(2:0,) =W, W, W,lz=W,z+W,Z, + W,2

« To make top element of e(x,y) to be 0, let W, = 0, which make § = 0.
» Then, e(y) = W - V3L(y,0)

* For any linear loss function for y, e(y) = Ay,
to extract all information of y, A has to be invertible.

 Sufficient loss function: standard mean-squared error or softmax cross entropy.
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Appendix C

* g T g * / N\T 1 l diSCT X) = €; and diSC’r x* = e
kjk(x;x ) = (p(x, th, Qb) B]’IZB]lqb(x ;th, Qb) — {O f ( ) J ( ) I

otherwise
» Choose ¢ and Bj;: f
discr()] .
Iy .0 1if6,=0 ji o By
5 06,0y) =< ¢ ] B; = I
b (5670, 0p) = 0 Jotherwise ot [Elj 0]+E
k_discr(-)_
where E;;, denote the matrix a 1 at (i, k) and 0 otherwise

e Then,

- T e; 0] ifdiscr(x) =e;
¢(x, Hft; Hb) BJ’I; _ {[ ] ] f ( ) ]

[0 0] otherwise

[e. O]" if discr(x*) = ¢

~ T
B; % 0f,0,) ~
ﬂgb(x It b) {[0 0]” otherwise
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Appendix C

ki (%, x7) = B(%; 670, 6,) BRBd(x";60,65)

r'discr(-)'
. o0 life, =0
305,05 ) =< ¢ - ,
b (367, 6p) 0  Jotherwise
k_discr(-)_
- T e 0] if discr(x) = e;
x;0¢,0,) BY ~ {47 J
b (x;670,6p) By {[O 0] otherwise

e SO,

[ej O] [%l

0

|

ki (x, x*) ~

rrPOSTEOCH

k

B]l(ﬁ(x*, Hjét’ Hl;)T ~ 4

if discr(x) = ej and discr(x*) = ¢
otherwise

Ejj

E1j

E;

l
0 + €l

if discr(x) = ¢

otherwise

if discr(x) = e; and discr(x™) = ¢

otherwise
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Thank you!
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