Probability Primer

Seungjin Choi

Department of Computer Science and Engineering
Pohang University of Science and Technology
77 Cheongam-ro, Nam-gu, Pohang 790-784, Korea
seungjin@postech.ac.kr
A set is a collection of objects. The objects are called elements of the set.

A sample space Ω is the set of all outcomes and subsets of Ω are called events.

Consider a universal set Ω and a collection of subsets of Ω. Let E, F, \ldots denote subsets in this collection. This collection of subsets of Ω forms a field \mathcal{M} if

1. $\emptyset \in \mathcal{M}$, $\Omega \in \mathcal{M}$.
2. If $E \in \mathcal{M}$ and $F \in \mathcal{M}$, then $E \cup F \in \mathcal{M}$ and $E \cap F \in \mathcal{M}$.
3. If $E \in \mathcal{M}$, then $E^c \in \mathcal{M}$.

A σ field \mathcal{F} is a field that is closed under any countable set of unions, intersections, and combinations.
Probability Measure

Given a sample space Ω, a function P defined on the subsets of Ω is a probability measure if the following four axioms are satisfied:

1. $P(A) \geq 0$ for any event $A \in \mathcal{F}$.
2. $P(\emptyset) = 0$.
3. $P(\Omega) = 1$.
4. $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ if A_1, A_2, \ldots are events that are mutually exclusive or pairwise disjoint.

The probability measure $P : \mathcal{F} \mapsto [0, 1]$ is a function on \mathcal{F} that assigns to an event $A \in \mathcal{F}$ a number in $[0, 1]$, such that above axioms are satisfied.
Joint, Marginal, Conditional, Total Probabilities, Independence

- **Joint probability**: \(P(A, B) \)
- **Marginal probability**: \(P(A) = \sum_B P(A, B) \)
- **Conditional probability**: \(P(A|B) = \frac{P(AB)}{P(B)} \)
- **Total probability**: \(P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i) \) where \(\bigcup_{i=1}^{n} A_i = \Omega \) (\(A_i \)’s are mutually exclusive)
- **Independence**: \(P(A, B) = P(A)P(B) \)
Bayes Theorem

Theorem (Bayes’ theorem)

Let A_i, $i = 1, \ldots, n$ be a set of disjoint and exhaustive events. Then $\bigcup_{i=1}^{n} A_i = \Omega$, $A_i \cap A_j = \emptyset$, $i \neq j$. For any event B with $P(B) > 0$ and $P(A_i) \neq 0 \ \forall i$,

$$P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}.$$
Random Variables and Ensembles

- A random variable $x(\zeta)$ (for a shorthand notation, x) is a correspondence rule between a random outcome ζ of an experiment \mathcal{H} and the real line \mathbb{R}.
- An ensemble X is a random variable x with a set of possible outcomes, $\mathcal{A}_x = \{\zeta_1, \zeta_2, \ldots, \zeta_n\}$, having probabilities $\{p_1, p_2, \ldots, p_n\}$, with $P(x = \zeta_i) = p_i$, $p_i > 0$ and $\sum_{x \in \mathcal{A}_x} P(x) = 1$.
- A joint ensemble XY is an ensemble in which each outcome is an ordered pair x, y with $x \in \mathcal{A}_x = \{\zeta_1, \zeta_2, \ldots, \zeta_n\}$ and $y \in \mathcal{A}_y = \{\nu_1, \nu_2, \ldots, \nu_n\}$.
Marginal and Conditional Probability

- **Marginal probability**

\[
P(x = \zeta_i) = \sum_{y \in \mathcal{A}_y} P(x = \zeta_i, y),
\]

\[
P(y) = \sum_{x \in \mathcal{A}_x} P(x, y).
\]

- **Conditional probability**

\[
P(x = \zeta_i | y = \nu_j) = \frac{P(x = \zeta_i, y = \nu_j)}{P(y = \nu_j)} \quad \text{if} \quad P(y = \nu_j) \neq 0.
\]
Product and Sum Rules

\mathcal{H} denotes background assumptions.

- **Product rule**

 $$
 P(x, y|\mathcal{H}) = P(x|y, \mathcal{H})P(y|\mathcal{H}).
 $$

- **Sum rule**

 $$
 P(x|\mathcal{H}) = \sum_y P(x, y|\mathcal{H}) = \sum_y P(x|y, \mathcal{H})P(y|\mathcal{H}).
 $$
Mean, Variance, Moments

- **Mean (ensemble average, statistical average, expected value)**

 $$\mu_x = E\{x\} = \sum_{x \in A_x} xP(x).$$

- **Variance**

 $$\sigma_x^2 = E\{(x - \mu_x)^2\} = E\{x^2\} - \mu_x^2.$$

- **Moment**

 $$m_k = E\{x^k\}.$$
A random vector \(x \in \mathbb{R}^n \) is a collection of \(n \) random variables, \(\{x_i\}_{i=1}^n \). The probability density function of the random vector \(x \) is defined by the joint density function, i.e.,

\[
P(x) = P(x_1, \ldots, x_n)
\]

A mean vector and a covariance matrix are defined by

\[
\mu = E\{x\} = \sum xP(x),
\]

\[
\Sigma = E\left\{(x - \mu)(x - \mu)^T\right\} = \sum (x - \mu)(x - \mu)^T P(x).
\]
Gaussian Distribution

- **Univariate**

\[p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left\{ -\frac{1}{2\sigma^2} (x - \mu)^2 \right\} . \]

- **Multivariate**

\[p(x) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\} . \]
Why Gaussian Distribution?

- Simple analytical properties.
- Completely characterized by mean and covariance.
- Central limit theorem.
- The distribution is again normal after a nonsingular linear transform.
- Marginal density is also normal and conditional density is also normal.
- There exists a linear transform which diagonalizes the covariance matrix (whitening, data sphering).
- Has maximum entropy, given values of the mean and the covariance matrix.