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Convex Sets and Functions

Definition (Convex Sets)
Let C be a subset of Rm. C is called a convex set if

αx + (1− α)y ∈ C , ∀x , y ∈ C , ∀α ∈ [0, 1]

Definition (Convex Function)
Let C be a convex subset of Rm. A function f : C 7→ R is called a
convex function if

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y) ∀x , y ∈ C , ∀α ∈ [0, 1]

3 / 31



Jensen’s Inequality

Theorem (Jensen’s Inequality)
If f (x) is a convex function and x is a random vector, then

E{f (x)} ≥ f (E{x}) .

Note: Jensen’s inequality can also be rewritten for a concave function,
with the direction of the inequality reversed.
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Proof of Jensen’s Inequality

Need to show that
∑N

i=1 pi f (xi ) ≥ f
(∑N

i=1 pixi
)

. The proof is based on the

recursion, working from the right-hand side of this equation.

f

(
N∑
i=1

pixi

)
= f

(
p1x1 +

N∑
i=2

pixi

)

≤ p1f (x1) +

[
N∑
i=2

pi

]
f

(∑N
i=2 pixi∑N
i=2 pi

) (
choose α =

p1∑N
i=1 pi

)

≤ p1f (x1) +

[
N∑
i=2

pi

]{
αf (x2) + (1− α)f

(∑N
i=3 pixi∑N
i=3 pi

)}
(

choose α =
p2∑N
i=2 pi

)

= p1f (x1) + p2f (x2) +
N∑
i=3

pi f

(∑N
i=3 pixi∑N
i=3 pi

)
,

and so forth.
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Information Theory

I Information theory answers two fundamental questions in
communication theory

I What is the ultimate data compression? −→ entropy H.
I What is the ultimate transmission rate of communication? −→

channel capacity C .

I In the early 1940’s, it was thought that increasing the transmission
rate of information over a communication channel increased the
probability of error −→ ”This is not true.”
Shannon surprised the communication theory community by proving
that this was not true as long as the communication rate was below
the channel capacity.

I Although information theory was developed for communications, it is
also important to explain ecological theory of sensory processing.
Information theory plays a key role in elucidating the goal of
unsupervised learning.
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Information and Entropy

I Information can be thought of as surprise, uncertainty, or
unexpectedness. Mathematically it is defined by

I = − logP(i),

where P(i) is the probability that the event labelled i occurs. The
rare event gives large information and frequent event produces small
information.

I Entropy is average information, i.e.,

H = −
N∑
i=1

P(i) logP(i).
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Example: Horse Race

Suppose we have a horse race with eight horses taking part. Assume that
the probabilities of winning for the eight horse are

(
1

2
,

1

4
,

1

8
,

1

16
,

1

64
,

1

64
,

1

64
,

1

64
).

Suppose that we wish to send a message to another person indicating
which horse won the race.

How many bits are required to describe this for each of the horses?

3 bits for any of the horses?
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No! The win probabilities are not uniform.
It makes sense to use shorter descriptions for the more probable horses and
longer descriptions for the less probable ones so that we achieve a lower
average description length. For example, we can use the following strings to
represent the eight horses:

0, 10, 110, 1110, 111100, 111101, 111110, 111111.

The average description length in this case is 2 bits as opposed to 3 bits for the
uniform code.
We calculate the entropy:

H(X ) = −1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

16
log

1

16
− 4

1

64
log

1

64
= 2 bits.

The entropy of a random variable is a lower bound on the average number of
bits required to represent the random variables and also on the average number
of questions needed to identify the variable in a game of ”twenty questions”.
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Entropy and Relative Entropy

I Entropy is the average information (a measure of uncertainty) that
is defined by

H(x) = −
∑
x∈X

p(x) log p(x)

= −Ep{log p(x)}.

I Relative entropy (Kullback-Leibler divergence) is a measure of
distance between two distributions and is defined by

KL[p‖q] =
∑
x∈X

p(x) log
p(x)

q(x)

= Ep

{
log

p(x)

q(x)

}
.
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Mutual Information

I Mutual information is the relative entropy between the joint
distribution and the product of marginal distributions,

I (x , y) =
∑
x∈X

∑
y∈Y

p(x , y) log

[
p(x , y)

p(x)p(y)

]
= D [p(x , y)‖p(x)p(y)]

= Ep(x,y)

{
log

[
p(x , y)

p(x)p(y)

]}
.

I Mutual information can be interpreted as the reduction in the
uncertainty of x due to the knowledge of y , i.e.,

I (x , y) = H(x)− H(x |y),

where H(x |y) = −Ep(x,y) {log p(x |y)} is the conditional entropy

11 / 31



Gibb’s Inequality

Theorem
KL[p||q] ≥ 0 with equality iff p = q.

Proof: Consider the Kullback-Leibler divergence for discrete distributions:

KL[p||q] =
∑
i

pi log
pi
qi

= −
∑
i

pi log
qi
pi

≥ − log

[∑
i

pi
qi
pi

]
(by Jensen’s inequality)

= − log

[∑
i

qi

]
= 0.
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More on Gibb’s Inequality

In order to find the distribution p which minimizes KL[p||q], we consider a
Lagrangian

E = KL[p||q] + λ

(
1−

∑
i

pi

)
=
∑
i

pi
pi
qi

+ λ

(
1−

∑
i

pi

)
.

Compute the partial derivative ∂E
∂pk

and set to zero,

∂E
∂pk

= log pk − log qk + 1− λ = 0,

which leads to pk = qke
λ−1. It follows from

∑
i pi = 1 that

∑
i qie

λ−1 = 1,
which leads to λ = 1. Therefore pi = qi .

The Hessian, ∂2E
∂p2

i
= 1

pi
, ∂2E
∂pi∂pj

= 0, is positive definite, which shows that

pi = qi is a genuine minimum.
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The EM Algorithm

I Maximum likelihood parameter estimates
I One definition of the ”best” knob settings.
I Often impossible to find directly.

I The EM algorithm:
I Finds ML parameters when the original (hard) problem can be

broken up into two (easy) pieces, i.e., finds the ML estimates of
parameters for data in which some variables are unobserved.

I A iterative method which consists of ”Expectation step” (E-step)
and ”Maximization step” (M-step).

1. Estimate some ”missing” or ”unobserved” data from observed data
and current parameters (E-step)

2. Using this ”complete” data, find the maximum likelihood parameter
estimates (M-step).

I For EM to work, two things have to be easy:

1. Guessing (estimating) missing data form data we have and our
current guess of parameters.

2. Solving for the ML parameters directly given the complete data.

14 / 31



Auxiliary Function

Definition
Q(θ, θ′) is an auxiliary function for L(θ) if the conditions

Q(θ, θ′) ≤ L(θ),

Q(θ, θ) = L(θ).

Theorem
If Q is an auxiliary function, then L is nondecreasing under the update

Q
(
θ, θ(k+1)

)
← arg max

θ
Q
(
θ, θ(k)

)
.
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A Graphical Illustration for an Auxiliary Function

L(θ)

Q(θ, θ(k))

θ(k) θ(k+1) θ
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A Lower Bound on the Likelihood

Consider a set of observed (visible) variables x , a set of unobserved
(hidden) variables s, and model parameters θ.
Then the log-likelihood is given by

L(θ) = log p(x |θ)

= log

∫
p(x , s|θ)ds.

Use Jensen’s inequality for any distribution of hidden variables, q(s), to
obtain

L(θ) = log

∫
q(s)

p(x , s|θ)

q(s)
ds

≥
∫

q(s) log

[
p(x , s|θ)

q(s)

]
ds (use Jensen’s inequality)

= F(q, θ). (lower bound on the log-likelihood)
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The Lower Bound F(q, θ)

Consider the lower bound F(q, θ),

F(q, θ) =

∫
q(s) log

[
p(x , s|θ)

q(s)

]
ds

=

∫
q(s) log p(x , s|θ)ds + H(q),

where H(q) = −
∫
q(s) log q(s)ds (entropy of q) and −F(q, θ)

corresponds to variational free energy.

I In the EM algorithm, we alternately optimize F(q, θ) w.r.t q and θ.

I It can be shown that this will never decrease L.
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EM as an Alternative Optimization

I E-step: Optimize F(q, θ) w.r.t. the distribution over hidden
variables given the parameters, i.e.,

q(k+1) = arg max
q
F
(
q, θ(k)

)
.

I M-step: Maximize F(q, θ) w.r.t. the parameters, given the hidden
distribution, i.e.,

θ(k+1) = arg max
θ
F
(
q(k+1), θ

)
= arg max

θ

∫
q(k+1)(s) log p(x , s|θ)ds,

where log p(x , s|θ) is the complete-data log-likelihood.
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A Graphical Illustration of EM Behavior

E−step

M−step

L(θ) = log p(x|θ)

θ(k)θ(k+1) θ
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The EM Algorithm never Decreases the Log-Likelihood

The difference between the log-likelihood and the lower bound is given by

L(θ)−F(q, θ) = log p(x |θ)−
∫

q(s) log

[
p(x , s|θ)

q(s)

]
ds

= log p(x |θ)−
∫

q(s) log

[
p(s|x , θ)p(x |θ)

q(s)

]
ds

= −
∫

q(s) log

[
p(s|x , θ)

q(s)

]
ds

= KL [q(s)||p(s|x , θ)] .

This difference is zero only if q(s) = p(s|x , θ). (this is E-step)

L
(
θ(k)
)

=
E-step

F
(
q(k+1), θ(k)

)
≤

M-step
F
(
q(k+1), θ(k+1)

)
≤

Jensen
L
(
θ(k+1)

)
.

21 / 31



Generalized EM: Partial M-Steps

I The M-step of the algorithm may be only partially implemented,
with the new estimate for the parameters improving the likelihood
given the distribution found in the E-step, but not necessarily
maximizing it.

I Such a partial M-step always results in the true likelihood improving
as well.
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Incremental EM: Partial E-Steps

I The unobserved variables are commonly independent, and influence
the likelihood of parameters only through simple sufficient statistics.
If these statistics can be updated incrementally when the
distribution for one of the variables is re-calculated, it makes sense
to immediately re-estimate the parameters before performing the
E-step for the next unobserved variable, as this utilizes the new
information immediately, speeding convergence.

I The proof holds even for the case of partial updates.

I Sparse or online versions of the EM algorithm would compute the
posterior for a subset of the data points or as the data arrives,
respectively. You can also update the posterior over a subset of the
hidden variables, while holding others fixed.
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Incremental EM

Assume that unobserved variables are independent, then we restrict the search
for a maximum of F to distributions q(s) =

∏
t qt(s t).

We can write F in the form F(q, θ) =
∑

t Ft(qt , θ) where

Ft(qt , θ) = 〈log p(s t , x t |θ)〉qt + H(qt).

Algorithm Outline: Incremental EM

E-step Choose a data point, x t .

Set q
(k)
l = q

(k−1)
l for l 6= t.

Set q
(k)
t = arg max

qt

Ft

(
qt , θ

(k−1)
)
.

M-step

θ(k) = arg max
θ
F
(
q(k), θ

)
.
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Sufficient Statistic

Definition
Let x be a random variable whose distribution depends on a parameter θ.
A real-valued function t(x) of x is said to be sufficient for θ if the
condition distribution of x , is independent of θ. That is, t is sufficient for
θ if

p(x |t, θ) = p(x |t).
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Exponential Family

Definition
A family of distributions is said to be a k-parameter exponential family if
the probability density function for x has the form

p(x |θ) = a(θ)b(x) exp
{
η>(θ)t(x)

}
,

a−1(θ) =

∫
b(x) exp

{
η>(θ)t(x)

}
dx ,

where η(θ) = [η1(θ), . . . , ηk(θ)]> (natural parameters) contains k
functions of the parameter θ and the sufficient statistics
t(x) = [t1(x), . . . , tk(x)]> contains k functions of the data x .

Alternative equivalent form is given by

p(x |θ) = exp
{
η>(θ)t(x) + g(θ) + h(x)

}
,

g(θ) = − log

∫
exp

{
η>(θ)t(x) + h(x)

}
dx .
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Exponential Family: Canonical Form

If η(θ) = θ, then the exponential family is said to be in canonical form.

By defining a transformed parameter η = η(θ), it is always possible to
convert a n exponential family to canonical form. The canonical form is
non-unique, since η(θ) can be multiplied by any nonzero constant,
provided that t(x) is multiplied by that constant’s reciprocal.

Let x ∈ Rm be a random vector whose distribution belongs to the
k-parameter exponential family, then the k-dimensional statistic t(x) is
sufficient for the parameter θ.
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Example of Exponential Family: Gaussian

Let us consider a univariate Gaussian distribution parameterized by its
mean and variance:

p(x) =
1√
2πσ

exp

{
− (x − µ)2

2σ2

}
=

1√
2πσ

exp

{
− µ2

2σ2

}
exp

{
− 1

2σ2
x2 +

µ

σ2
x

}
.

This is a two-parameter exponential family with

a(θ) =
1√
2πσ

exp

{
− µ2

2σ2

}
, b(x) = 1

η =

[
− 1

2σ2
,
µ

σ2

]T
, t =

[
x2, x

]T
.
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Example of Exponential Family: Bernoulli

Consider Bernoulli distribution parameterized by µ ∈ [0, 1]:

p(x) = µx(1− µ)1−x .

Matching it with the canonical form p(x) = exp {θx + g(θ) + h(x)}
yields

θ = log
µ

1− µ,

g(θ) = − log
(
1 + eθ

)
,

h(x) = 0.

Parameter values of the distribution are mapped to natural parameters
via link function.

29 / 31



EM for Exponential Family

Given a complete data z = (x , s), we write the expected complete-data
log-likelihood:

〈Lc〉 =
〈

log p(x , s)|x , θ(k)
〉

=
〈
η(θ)>t(z) + g(θ) + h(z)|x , θ(k)

〉
= η(θ)>

〈
t(z)|x , θ(k)

〉
+ g(θ) +

〈
h(z)|x , θ(k)

〉

EM algorithm for exponential families

I E-step: Requires only sufficient statistics

t(k+1) =
〈
t(z)|x , θ(k)

〉
.

I M-step:

θ(k+1) = arg max
θ

[
η(θ)>t(k+1) + g(θ)

]
.

30 / 31



References

I Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977) ”Maximum
likelihood from incomplete data via the EM algorithm” (with
discussion), Journal of the Royal Statistical Society B, vol. 39, pp.
1-38.

I Neal, R. M. and Hinton, G. E. (1999) ”A view of the EM algorithm
that justifies incremental, sparse, and other variants” Learning in
Graphical Models (edited by M. Jordan), pp. 355-368.

31 / 31


