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Nonnegative Matrix Factorization (NMF)

X

U V

I Given a nonnegative target
matrix X ∈ RD×N , determine
a 2-factor decomposition:

X ≈ UV>,

such that factor matrices
U ∈ RD×K and V ∈ RN×K

are nonnegative as well.

I Low-rank approximation of
nonnegative data.

I Involves the optimization:

min ‖X −UV>‖2,

subject to U > 0 and V > 0.
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Holistic Representation
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Parts-Based Representation
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Nonnegative Data

(a) Document (b) Spectrogram

(c) Image (d) Gene Expression
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Matrix Factorization for Brain Computer Interface, 2008
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Matrix Factorization for Collaborative Filtering, 2009
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NMF for Clustering
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Nonnegative Matrix Factorization (NMF)

Given a nonnegative matrix X ∈ Rm×n (with Xij ≥ 0 for i = 1, . . . ,m
and j = 1, . . . , n), NMF seeks a decomposition of X that is of the form:

X ≈ UV>,

where U ∈ Rm×k and V ∈ Rn×k are restricted to be nonnegative
matrices as well.

I When columns in X are treated as data points in m-dimensional
space, columns in U are considered as basis vectors (or factor
loadings) and each row in V is encoding that represents the extent
to which each basis vector is used to reconstruct each data vector.

I Alternatively, when rows in X are data points in n-dimensional
space, columns in V correspond to basis vectors and each row in U
represents encoding.
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NMF: Least Squares

The LS error function is given by

JLS = ‖X −UV>‖2

=
m∑
i=1

n∑
j=1

(
Xij − [UV>]ij

)2
.

Then, NMF involves the following optimization:

arg min
U≥0,V≥0

‖X −UV>‖2.

Gradient descent yields

Uij ← Uij + ηUij

(
[XV ]ij − [UV>V ]ij

)
,

Vij ← Vij + ηVij

(
[X>U]ij − [VU>U]ij

)
.
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Multiplicative Updates

Gradient descent algorithms do not preserve that elements of U and V
are nonnegative.
Choose learning rates

ηUij =
Uij

[UV>V ]ij
,

ηVij =
Vij

[VU>U]ij
.

Then we have multiplicative updates:

Uij ← Uij
[XV ]ij

[UV>V ]ij
,

Vij ← Vij
[X>U]ij

[VU>U]ij
.
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Multiplicative Updates for NMF: Alternative Derivation
I Suppose that the gradient of an error function has a decomposition

that is of the form

∇J = [∇J ]+ − [∇J ]− ,

where [∇J ]+ > 0 and [∇J ]− > 0.
I Then multiplicative update for parameters Θ has the form

Θ← Θ�

(
[∇J ]−

[∇J ]+

).η
.

I Compute derivatives:

∇UJ = [∇UJ ]+ − [∇UJ ]− = UV>V − XV ,
∇VJ = [∇VJ ]+ − [∇VJ ]− = VU>U − X>U .

I Choosing η = 1 yields

U ← U � XV
UV>V

, V ← V � X>U
VU>U

.
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Term-Document Matrix

A term-document matrix X ∈ Rm×n is a collection of vector space
representations of documents, where rows are terms (words) and columns
are documents

Xij = tij log

(
n

idfi

)
,

where tij is the term frequency of word i in document j and idfi is the
number of documents containing word i .
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Clustering by Factorization

NMF yields a factorization X = UV>:

I Uij : the degree to which term i belongs to cluster j .

I Vij : the degree document i is associated with cluster j .

Document clustering is based on column vectors of V>.

Assign document i to cluster j∗ if

j∗ = arg max
j

Vij .
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Document Clustering by NMF

1. Construct a term-document matrix X .

2. Perform NMF on X , yielding X = UV>.

3. Normalization

Uij ←
Uij√∑

i U
2
ij

, Vij ← Vij

√∑
i

U2
ij

 .

4. Use V to determine the cluster label for each document. Assign
document di to cluster j∗ if

j∗ = arg max
j

Vij .
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k-means: Matrix Factorization Perspective

Recall the objective function for k-means clustering

J =
K∑

k=1

∑
i∈Ck

‖x i − µk‖2 =
N∑
i=1

K∑
j=1

Vij‖x i − µj‖2,

where

Vij =

{
1 if x i ∈ Cj
0 otherwise

This can be written as

J = ‖X −UV>‖2,

where X = [x1, . . . , xN ] and U = [µ1, . . . ,µK ] contains centers
(prototype vectors) in columns and V is the indicator matrix.
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NMF: I-Divergence
I Consider the I -divergence between the data and the model:

JI =
∑
i

∑
j

Xij log
Xij[

UV>
]
ij

− Xij +
[
UV>

]
ij

 .

Note that I-divergence is identical to Kullback-Leibler divergence

when
∑

i

∑
j Xij =

∑
i

∑
j

[
UV>

]
ij

= 1.

I Multiplicative updates for U and V are determined by minimizing
JI with nonnegativity constraints U ≥ 0,V ≥ 0 satisfied:

Uij ← Uij

∑
k(Xij/[UV>]ik)Vkj∑

k Vkj
,

Vij ← Vij

∑
k(Xki/[UV>]ki )Ukj∑

k Ukj
.

I Equivalence between NMF and PLSA was shown by Gaussier and
Goutte (SIGIR-2005).
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Weighted NMF

I In practice, the data matrix is often incomplete, i.e., some of entries
are missing or unobserved.

I In order to handle missing entries in the decomposition, we consider
an objective function that is a sum of weighted residuals:

J =
∑
i,j

Wij(Xij − [UV>]ij)
2 = ‖W � (X −UV>)‖2,

where Wij are binary weights, i.e.,

Wij =

{
1 if Xij is observed
0 if Xij is unobserved.

I Multiplicative updates for WNMF are given as:

U ← U � [W � X ]V
[W �UV>]V

, V ← V � [W � X ]>U
[W � VU>]U

.
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Weighted NMF for Collaborative Filtering
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Weighted NMF for Collaborative Filtering
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