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Regression

I Regression aims at modeling the dependence of a response Y on a
covariate X . In other words, the goal of regression is to predict the
value of one or more continuous target variables y given the value of
input vector x .

I The regression model is described by

y = f (x) + ε.

I Terminology:
I x : input, independent variable, predictor, regressor, covariate
I y : output, dependent variable, response

I The dependence of a response on a covariate is captured via a
conditional probability distribution, p(y |x).

I Depending on f (x),
I Linear regression: f (x) =

∑M
j=1 wjφj (x) + w0.

I Kernel regression: f (x) =
∑N

i=1 wik(x , x i ) + w0.
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Regression Function: Conditional Mean

We consider the mean squared error and find the MMSE estiamte:

E(f ) =
〈
‖y − f (x)‖2

〉
=

∫ ∫
‖y − f (x)‖2p(x , y)dxdy

=

∫ ∫
‖y − f (x)‖2p(x)p(y |x)dxdy

=

∫
p(x)


∫
‖y − f (x)‖2p(y |x)dy︸ ︷︷ ︸

to be minimized

 dx

∂
∂f (x)

[∫
‖y − f (x)‖2p(y |x)dy

]
= 0 ⇒ f (x) =

∫
yp(y |x)dy = 〈y |x〉 .
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Linear Regression

Linear regression refers to a model in which the conditional mean of y
given the value of x is an affine function of φ(x)

f (x) =
M∑

j=1

wjφj (x) + w0φ0(x) = w>φ(x),

where φj (x) are known as basis functions and

w = [w0,w1, . . . ,wM ]>,

φ = [φ0, φ1, . . . , φM ]>.

By using nonlinear basis functions, we allow the function f (x) to be a
nonlinear function of the input vector x (but a linear function of φ(x)).
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Polynomial Regression: yt =
∑M

j=0 wjφj (xt) =
∑M

j=0 wjx
j
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Basis Functions

I Polynomial regression: φj (x) = x j .

I Gaussian basis functions: φj (x) = exp

{
−‖x−µj‖

2

2σ2

}
.

I Spline basis functions: Piecewise polynomials (divide the input space
up into regions and fit a different polynomial in each region).

I Many other possible basis functions: sigmoidal basis functions,
hyperbolic tangent basis functions, Fourier basis, wavelet basis, and
so on.
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Least Squares Method

Given a set of training data {(x t , yt)}N
t=1, we determine the weight vector

w which minimizes

ELS =
1

2

N∑
t=1

{
yt −w>φ(x t)

}2
=

1

2
‖y −Φw‖2,

where y = [y1, . . . , yN ]> and Φ ∈ RN×(M+1) is known as the design
matrix with Φtj = φj (x t), i.e.,

Φ =


φ0(x1) φ1(x1) · · · φM (x1)
φ0(x2) φ1(x2) · · · φM (x2)
...

...
. . .

...
φ0(xN ) φ1(xN ) · · · φM (xN )

 .
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∂ELS

∂w = 0 leads to the normal equation that is of the form

Φ>Φw = Φ>y .

Thus, LS estimate of w is given by

wLS =
(
Φ>Φ

)−1
Φ>y = Φ†y ,

where Φ† is known as the Moore-Penrose pseudo-inverse.
Φ>Φ is known as the Gram matrix.
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Maximum Likelihood

We assume that the target variable yt is given by a deterministic function
f (x t ,w) = w>φ(x t) with additive Gaussian noise so that

y = Φw + ε,

where ε ∼ N (0, σ2I ).
The log-likelihood is given by

L = log p(y |Φ,w) =
N∑

t=1

log p(yt |φ(x t),w)

= −N

2
log σ2 − N

2
log 2π − σ−2ELS .

Therefore, under Gaussian noise assumption, wML = wLS .
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Ridge Regression

We consider the sum-of-squares error function with a Euclidean
norm-based regularizer

E =
1

2
‖y −Φw‖2︸ ︷︷ ︸

LSfit

+
λ

2
‖w‖2︸ ︷︷ ︸

regularizer

.

Solving ∂E
∂w = 0 for w leads to

w ridge =
(
λI + Φ>Φ

)−1
Φ>y .
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Ridge Regression: MAP Perpective

Recall the likelihood:

p(y |Φ,w) = N (y |Φw , σ2I ).

Assume a zero-mean Gaussian prior with covariance Σ for parameters w :

p(w) = N (w |0,Σ).

Then the posterior over w ,

p(w |y ,Φ) =
p(y |Φ,w)p(w)∫
p(y |Φ,w)p(w)dw

,

is still Gaussian with mean and mode at

ŵ = (σ2Σ−1 + Φ>Φ)−1Φ>y .

When Σ is proportional to identity, i.e., Σ = λ−1σ2I , this is called ridge
regression.
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Ridge Regression: Shrinkage
I Suppose that the SVD of the design matrix Φ ∈ RN×(M+1) has the form

Φ = UDV>, where D = diag(d1, . . . , dM+1).

I Using the SVD we write the least squares fitted vector as

ΦwLS = Φ
(
Φ>Φ

)−1

Φ>y = UU>y =
M+1∑
i=1

u iu>i y ,

where U>y are the coordinates of y with respect to the orthonormal basis
U .

I The ridge solutions are

Φw ridge = Φ
(
λI + Φ>Φ

)−1

Φ>y

= UD(D2 + λI )−1DU>y =
M+1∑
i=1

u i
d2

i

d2
i + λ

u>i y .

It shrinks the coordinates by the factors
d2

i

d2
i +λ

. A greater amount of

shrinkage is applied to basis vectors with smaller d2
i .
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Least Mean Square (LMS)

LMS is a gradient-descent method which minimizes the instantaneous error Et ,
where

ELS =
N∑

t=1

Et =
1

2

N∑
t=1

{
yt − w>φ(x t)

}2

.

The gradient descent method leads to the updating rule for w that is of the
form

w ← w − η∇Et

← w + η
{
yt − w>φ(x t)

}
φ(x t),

where η > 0 is a constant known as learning rate.
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Recursive (Sequential) LS

We introduce the forgetting factor λ to de-emphasize old samples, leading to
the following error function

ERLS =
1

2

t∑
i=1

λt−i (yi − φiw
>
t )2,

where φt = φ(x t).
Solving ∂ERLS

∂w t
= 0 for w t leads to[

t∑
i=1

λt−iφiφ
>
i

]
w t =

[
t∑

i=1

λt−iyiφi

]
.
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We define

P t =

[
t∑

i=1

λt−iφiφ
>
i

]−1

,

r t =

[
t∑

i=1

λt−iyiφi

]
.

With these definitions, we have

w t = P tr t .

The core idea of RLS is to apply the matrix inversion lemma to develop the
sequential algorithm without matrix inversion.

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1.
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The recursion for P t is given by

P t =

[
t∑

i=1

λt−iφiφ
>
i

]−1

=

[
λ

t−1∑
i=1

λt−1−iφiφ
>
i + φtφ

>
t

]−1

=
1

λ

[
P t−1 −

P t−1φtφ
>
t P t−1

λ+ φ>t P t−1φt

]
. (matrix inversion lemma)
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Thus, the updating rule for w is given by

w t = P tr t

=
1

λ

[
P t−1 −

P t−1φtφ
>
t P t−1

λ+ φ>t P t−1φt

]
[λr t−1 + ytφt ]

= w t−1 +
P t−1φt

λ+ φ>t P t−1φt︸ ︷︷ ︸
gain

[
yt − φ>t w t−1

]
︸ ︷︷ ︸

error

.
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Expected Loss

The squared loss L is given by

L(y , f (x)) = (f (x)− y)2 .

The expected loss is computed by

E {L(y , f (x))} =

∫ ∫
(f (x)− y)2 p(x , y)dxdy

= E
{

(f (x)− E{y |x}+ E{y |x} − y)2
}

= E
{

(f (x)− E{y |x})2 + (E{y |x} − y)2
}

+ 2E {(f (x)− E{y |x}) (E{y |x} − y)}︸ ︷︷ ︸
0

.
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The expected loss can be written as

E {L(y , f (x))} =

∫
(f (x)− E{y |x})2 p(x)dx︸ ︷︷ ︸

first term

+

∫
(E{y |x} − y)2 p(x)dx︸ ︷︷ ︸

second term

.

I The function f (x) appears only in the first term which will be minimized
when f (x) = E{y |x}.

I The second term is the variance of the distribution of y , averaged over x ,
representing the intrinsic variability of the target data and can be regarded
as noise. Because it is independent of f (x), it represents the irreducible
minimum value of the loss function.
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Bias-Variance Decomposition

Consider the integrand of the first term, which for a particular data set D takes
the form (f (x ;D)− E{y |x})2.
Then we have

ED
{

(f (x ;D)− E{y |x})2
}

= (ED{f (x ;D)} − E{y |x})2︸ ︷︷ ︸
(bias)2

+ ED
{

(f (x ;D)− ED{f (x ;D)})2
}

︸ ︷︷ ︸
variance

.

expected loss = (bias)2 + variance + noise.

21 / 36



Bias-Variance Dilemma

There is a trade-off between bias and variance:

I flexible models: low bias but high variance

I rigid models: high bias but low variance

The model with the optimal predictive capability is the one that leads to the
best balance between bias and variance.
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Example

We consider the sinusoidal data set. We generate 100 data sets, each
containing N = 25 data points, independently from the sinusoidal curve
h(x) = E{y |x} = sin(2πx). The data sets are indexed by l = 1, . . . , L where
L = 100. For each data set D(l), we fit a model with 24 Gaussian basis
functions through a method of ridge regression to give a prediction function
f (l)(x).

f (x) =
1

L

L∑
l=1

f (l)(x),

(bias)2 =
1

N

N∑
t=1

[
f (xt)− h(xt)

]2
,

variance =
1

N

N∑
t=1

1

L

L∑
l=1

[
f (l)(xt)− f (xt)

]2
.
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Rigid model (1st row) and flexible model (2nd row)
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Bayesian Linear Regression

The likelihood function is given by

p(y |Φ,w) =
N∏

t=1

p(yt |φt ,w),

where p(yt |φt ,w) = N (yt |w>φt , β
−1).

Assuming Gaussian prior for w , i.e., p(w) = N (w |µ0,Σ0), the posterior
distribution over w is again Gaussian that is of the form

p(w | y ,Φ) = N (w |µN ,ΣN ),

where

µN = ΣN (Σ−1
0 µ0 + βΦ>y),

Σ−1
N = Σ−1

0 + βΦ>Φ.
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For the sake of simplicity, we consider a particular form of Gaussian prior (zero
mean isotropic Gaussian prior),

p(w |α) = N (w | 0, α−1I ).

Then the corresponding posterior distribution over w is given by

p(w | y) = N (w |µN ,ΣN ),

where

µN = βΣNΦ
>y ,

Σ−1
N = αI + βΦ>Φ.
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An Example of Sequential Bayesian Learning

Consider a linear model y = w0 + w1x where only two parameters are involved.
Next slide illustrates the sequential nature of Bayesian learning, showing that
the posterior distribution over parameters become sharper as more data points
are observed.

I Left-hand column: likelihood, p(y |x ,w).

I Middle column: prior/posterior, p(w |Dt).

I Right-hand column: samples of function y = w0 + w1x where w are drawn
from the posterior.
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Predictive Distribution

Make predictions of y∗ for new values x∗ (i.e, φ∗). Let D = {Φ, y}. Then the
predictive distribution is given by

p(y∗ |φ∗,D, α, β) =

∫
p(y∗ |φ∗,w , β)p(w | D, α, β)dw

= N
(
y∗ |µ>N φ∗, σ

2
N (x∗)

)
,

where

µN = βΣNΦ
>y , Σ−1

N = αI + βΦ>Φ,

σ2
N (x∗) =

1

β︸︷︷︸
noise on the data

+ φ>∗ ΣNφ∗︸ ︷︷ ︸
uncertainty associated with parameters w

.
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Examples of Predictive Distributions
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Plots of f (x ; w) using samples from p(w |y)
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Bayesian Model Comparison

I Avoid the over-fitting associated with maximum likelihood by
marginalizing over the model parameters instead of making point
estimates of their values.

I Models can be compared directly on the training data, without the need
for a validation set.

I Avoids the multiple training runs for each model associated with
cross-validation.
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Suppose that we wish to compare a set of L models, {Mi} for i = 1, . . . , L. (a
model refers to a probability distribution over the observed data D)

Given a training set D, we then wish to evaluate the posterior distribution

p(Mi |D) ∝ p(Mi )︸ ︷︷ ︸
prior

p(D|Mi )︸ ︷︷ ︸
evidence

.

I p(Mi ) is a prior probability distribution to express our uncertainty. The
data is generated from one of these models but we are uncertain which
one.

I p(D|Mi ) is the model evidence which expresses the preference shown by
the data for different models. This is also known as marginal likelihood,
since it can be viewed as a likelihood function over the space of models, in
which the parameters have been marginalized out.
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I Bayes factor is the ratio of model evidences for two models:

p(D|Mi )

p(D|Mj )
.

I Model selection: Choose the single most probable model. For a model
governed by a set of parameters w , the model evidence is given by

p(D|Mi ) =

∫
p(D|w ,Mi )p(w |Mi )dw .
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p(D)

DD0

M1

M2

M3

I M1 is the simplest and M3 is the most complex.

I For the particular observed data set D0, the model M2 with intermediate
complexity has the largest evidence.
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Marginal Likelihood: Hyperparameter Estimation

We estimate hyperparameters α and β through maximizing the marginal
likelihood.
The marginal likelihood is given by

p(y |Φ, α, β) =

∫
p(y |Φ,w , β)p(w |α)dw .

Marginal likelihood maximization is illustrated in detail in Sec. 3.5.1 and 3.5.2.
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