Example: DC Level in White Gaussian Noise

Seungjin Choi

Department of Computer Science

POSTECH, Korea

Example 1: Consider the multiple observations

\[x_t = \theta + \epsilon_t, \quad t = 1, 2, \ldots, N, \]

where \(\theta \) is a constant (DC level that we try to estimate) and \(\epsilon_t \) is white Gaussian noise, \(\epsilon_t \sim \mathcal{N}(0, \sigma^2) \).

We choose two different estimators, \(\hat{\theta} \) and \(\tilde{\theta} \), given by

\[
\hat{\theta} = \frac{1}{N} \sum_{t=1}^{N} x_t, \\
\tilde{\theta} = x_1.
\]

The first estimator \(\hat{\theta} \) is the sample mean and the second estimator \(\tilde{\theta} \) takes the value of the first observation \(x_1 \), so it does not make use of all the data. Our interests are:

- How close will estimators be to \(\theta \)?
- Which one of these two estimators will be better?

Assessment: We first show that the mean of each estimator is true value,

\[
\langle \hat{\theta} \rangle = \left(\frac{1}{N} \sum_{t=1}^{N} x_t \right) \\
= \frac{1}{N} \sum_{t=1}^{N} \langle x_t \rangle \\
= \theta, \\
\langle \tilde{\theta} \rangle = \langle x_1 \rangle \\
= \theta.
\]

Thus, on the average the estimators produce the true value.
Second, we compute the variances of estimators,

\[
\text{var} (\hat{\theta}) = \text{var} \left(\frac{1}{N} \sum_{t=1}^{N} x_t \right)
\]

\[
= \frac{1}{N^2} \sum_{t=1}^{N} \text{var} (x_t)
\]

\[
= \frac{1}{N^2} N \sigma^2
\]

\[
= \frac{\sigma^2}{N},
\]

and

\[
\text{var} (\tilde{\theta}) = \text{var} (x_1)
\]

\[
= \sigma^2.
\]

Thus one can see that \(\text{var} (\hat{\theta}) > \text{var} (\tilde{\theta}) \), which implies that \(\hat{\theta} \) is better than \(\tilde{\theta} \).

Finally, we show that \(\hat{\theta} \) is the maximum likelihood estimator (MLE). Since \(\epsilon_t \) is a white Gaussian sequence, a single factor of the likelihood is given by

\[
p(x_t; \theta) = N(\theta, \sigma^2).
\]

Thus the log-likelihood is given by

\[
\mathcal{L} = \log \left(\prod_{t=1}^{N} p(x_t; \theta) \right)
\]

\[
= \sum_{t=1}^{N} \log p(x_t; \theta)
\]

\[
= -\frac{N}{2} \log (2\pi \sigma^2) - \frac{1}{2\sigma^2} \sum_{t=1}^{N} (x_t - \theta)^2.
\]

The MLE \(\theta_{ml} \) is given by

\[
\theta_{ml} = \arg \max_{\theta} \mathcal{L}.
\]

It follows from \(\frac{\partial \mathcal{L}}{\partial \theta} = 0 \) that we have

\[
\theta_{ml} = \frac{1}{N} \sum_{t=1}^{N} x_t.
\]