Example: DC Level in White Gaussian Noise

SEUNGJIN CHOI DEPARTMENT OF COMPUTER SCIENCE POSTECH, KOREA

Example 1: Consider the multiple observations

$$x_t = \theta + \epsilon_t, \quad t = 1, 2, \dots, N, \tag{1}$$

where θ is a constant (DC level that we try to estimate) and ϵ_t is white Gaussian noise, $\epsilon_t \sim \mathcal{N}(0, \sigma^2)$. We choose two different estimators, $\hat{\theta}$ and $\check{\theta}$, given by

$$\hat{\theta} = \frac{1}{N} \sum_{t=1}^{N} x_t, \tag{2}$$

$$\check{\theta} = x_1. \tag{3}$$

The first estimator $\hat{\theta}$ is the sample mean and the second estimator $\check{\theta}$ takes the value of the first observation x_1 , so it does not make use of all the data. Our interests are:

- How close will estimators be to θ ?
- Which one of these two estimators will be better?

Assessment: We first show that the mean of each estimator is true value,

$$\left\langle \hat{\theta} \right\rangle = \left\langle \frac{1}{N} \sum_{t=1}^{N} x_t \right\rangle$$

$$= \frac{1}{N} \sum_{t=1}^{N} \langle x_t \rangle$$

$$= \theta,$$

$$\left\langle \check{\theta} \right\rangle = \langle x_1 \rangle$$

$$= \theta$$

Thus, on the average the estimators produce the true value.

Second, we compute the variances of estimators,

$$\operatorname{var}\left(\hat{\theta}\right) = \operatorname{var}\left(\frac{1}{N}\sum_{t=1}^{N}x_{t}\right)$$

$$= \frac{1}{N^{2}}\sum_{t=1}^{N}\operatorname{var}\left(x_{t}\right)$$

$$= \frac{1}{N^{2}}N\sigma^{2}$$

$$= \frac{\sigma^{2}}{N},$$

and

$$\operatorname{var}(\check{\theta}) = \operatorname{var}(x_1)$$
$$= \sigma^2$$

Thus one can see that $\operatorname{var}\left(\hat{\theta}\right) > \operatorname{var}\left(\check{\theta}\right)$, which implies that $\hat{\theta}$ is better than $\check{\theta}$.

Finally, we show that $\hat{\theta}$ is the maximum likelihood estimator (MLE). Since ϵ_t is a white Gaussian sequence, a single factor of the likelihood is given by

$$p(x_t; \theta) = \mathcal{N}(\theta, \sigma^2). \tag{4}$$

Thus the log-likelihood is given by

$$\mathcal{L} = \log \left(\prod_{t=1}^{N} p(x_t; \theta) \right)$$

$$= \sum_{t=1}^{N} \log p(x_t; \theta)$$

$$= -\frac{N}{2} \log \left(2\pi\sigma^2 \right) - \frac{1}{2\sigma^2} \sum_{t=1}^{N} (x_t - \theta)^2.$$
(5)

The MLE θ_{ml} is given by

$$\theta_{ml} = \underset{\theta}{\operatorname{arg\,max}} \mathcal{L}. \tag{6}$$

It follows from $\frac{\partial \mathcal{L}}{\partial \theta} = 0$ that we have

$$\theta_{ml} = \frac{1}{N} \sum_{t=1}^{N} x_t. \tag{7}$$