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Abstract

Most manifold learning methods consider only one sim-
ilarity matrix to induce a low-dimensional manifold em-
bedded in data space. In practice, however, we often use
multiple sensors at a time so that each sensory informa-
tion yields different similarity matrix derived from the
same objects. In such a case, manifold integration is a
desirable task, combining these similarity matrices into
a compromise matrix that faithfully reflects multiple
sensory information. A small number of methods exists
for manifold integration, including a method based on
reproducing kernel Krein space (RKKS) or DISTATIS,
where the former is restricted to the case of only two
manifolds and the latter considers a linear combination
of normalized similarity matrices as a compromise ma-
trix. In this paper we present a new manifold integra-
tion method, Markov random walk on multiple mani-
folds (RAMS), which integrates transition probabilities
defined on each manifold to compute a compromise ma-
trix. Numerical experiments confirm that RAMS finds
more informative manifolds with a desirable projection
property.

Introduction
Manifold learning involves inducing a smooth nonlinear
low-dimensional manifold from a set of data points drawn
from the manifold. Various methods (for example see Seung
& Lee; Tenenbaum, de Silva, & Langford; Saul & Roweis
2000; 2000; 2003) have been developed and their wide ap-
plications have drawn attention in pattern recognition and
signal processing. Isomap is a representative isometric
mapping method. It extends metric multidimensional scal-
ing (MDS), considering Dijkstra’s geodesic distance (short-
est path) on a weighted graph, instead of Euclidean dis-
tance (Tenenbaum, de Silva, & Langford 2000). Isomap
can be interpreted as a kernel method (Hamet al. 2004;
Choi & Choi 2007), where one dissimilarity matrix corre-
sponds to one kernel matrix, representing one manifold of
the data set.

In practice, however, we as humans use multiple sensors
at a time, and each sensor generates data set on one mani-
fold, then our brains combine multiple manifolds to identify
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objects. For example, when we analyze a speech source, we
use both ears at the same time and merge the difference in
information from the two ears. As another example, suppose
there are colored discs in a room as in Fig. 1, andN persons
enter the room separately and each measures the dissimilar-
ity of the discs in their own ways. One person might measure
the dissimilarity mainly based on the disc size, while another
might take the measure based on color only. Based on these
measures, we want to reconstruct the true locations of the
discs from theN persons’ different opinions, described by
the dissimilarities. These examples give us more than one
dissimilarity matrix and require us to find the one dissimi-
larity matrix, which is interpreted as one manifold.

So far, there have been few approaches that merge mul-
tiple dissimilarity matrices. A simple method to make one
dissimilarity matrix is to combine them through substrac-
tion or division (Laub & M̈uller 2004). Alternatively, we
can use the reproducing kernel Krein space (RKKS) instead
of reproducing kernel Hilbert space (RKHS) as in Onget
al. (2004). RKKS uses negative eigenvalues in the ker-
nel matrix, while conventional kernel methods use positive
semi-definite kernel matrix. Recently, Abdiet al. (2005)
suggested an algorithm, DISTATIS, based on linear sum of
manifolds through principal component analysis (PCA).

In this paper, we suggest a new algorithm,random walk
on multiple manifolds (RAMS), utilizing the fact that the
distance in Euclidean space can be translated into transi-
tion probability. As in previous examples, it is natural to
assume that two dissimilarities are measured independently.
From this, we can calculate one transition probability from
multiple transition probabilities, and then obtain a statisti-
cal distance from the final transition probability. This statis-
tical distance is a nonlinear sum of the multiple distances,
contrary to DISTATIS. RAMS can be applied to the case of
more than two manifolds, contrary to RKKS which uses the
sign of the eigenvalues. Moreover, since RAMS uses ker-
nel Isomap after getting one dissimilarity matrix, RAMS in-
herits the desirable projection property from kernel Isomap
(Choi & Choi 2007).

Related Work
Although it was not suggested in Laub & M̈uller (2004) and
Ong et al. (2004) that manifolds be merged, we can uti-
lize their approaches in our problem. To our knowledge,



Abdi et al. (2005) is the first to try to merge manifolds to
find one manifold (compromised manifold), where they in-
troduced DISTATIS. These methods work well in certain
cases, but they still have some problems in nonlinear cases as
shown in ”Experiments”. In this section, we look into Ong
et al. (2004) and Abdiet al. (2005) in more detail (Laub &
Müller 2004 is more-or-less straight forward).

Using reproducing kernel Krein space (RKKS)
Most kernel methods use positive semi-definite kernel ma-
trix to guarantee that the dissimilarity matrix is the Eu-
clidean representation in the embedded manifold. In those
methods, any negative eigenvalue for the kernel matrix
means error or noise. However, as in Isomap, usually
the kernel matrix from dissimilarity of points does not sat-
isfy the semi-positiveness. Moreover, as stated in Laub &
Müller (2004), negative eigenvalues might indicate impor-
tant features.

Ong et al. (2004) showed that non-positive kernels
are meaningful just as positive kernels and suggested us-
ing RKKS to generalize reproducing kernel Hilbert space
(RKHS) for both positive semi-definite kernel and nega-
tive kernel. With two RKHSs,H+ and H−, if a Krein
spaceK is on RKKS with K = H+ ⊖ H− defined by
〈f, g〉K = 〈f+, g+〉H+

− 〈f−, g−〉H
−

, where〈, 〉K, 〈, 〉H+

and〈, 〉H
−

represent inner products inK, H+ andH−, re-
spectively, andf ∈ K, f+ ∈ H+, f− ∈ H− as dog, g+ and
g−, then there exists two positive kernelsk+ andk− such
that

k = k+ − k−. (1)

From this, if we have two manifolds that are orthogonal,
then we can merge them using Eq. (1). From two dissim-
ilarity matrices, we can calculate two kernel matrices and
then apply Eq. (1). However, this assumption about orthog-
onality between two manifolds is not satisfied in the general
case, so when we apply this approach, there is some distor-
tion in the compromised manifold. Moreover, this approach
is only for two dissimilarity measures. To apply this method
to more than two dissimilarity measures, we must apply it
iteratively. However, it is unnatural and the order of merger
should be determined properly. See ”Experiments” for re-
sults comparing the orthogonal and the nonorthogonal cases.

DISTATIS
Abdi et al. (2005) calculated kernel matricesS(k), k =

1, · · · , C for each dissimilarity matrixD(k), as in kernel
Isomap (Choi & Choi 2007).

S̃
(k)

= −
1

2
HD(k)2H, (2)

S(k) = λ−1
1 S̃

(k)
, (3)

whereλ1 is the first eigenvalue of̃S
(k)

, D(k)2 = [D
(k)2
ij ]

means the element-wise square of the distance matrix
D(k) = [D

(k)
ij ], andH is the centering matrix, given by

H = I − 1
N

eNe⊤
N for eN = [1 . . . 1]⊤ ∈ R

N . Then,

each kernel matrix is converted into one vectorsi, to pro-
duce a matrixX = [s1, s2, · · · , sT ], which corresponds to
a matrix of manifolds using our terminology. The principal
components are then calculated using the inner product ofX
as in MDS or Isomap. The first eigenvector corresponding
to the largest eigenvalue is the compromised matrix, which
serves as the target manifold to project the data set. Actu-
ally, this final compromised manifold is expressed using the
kernel matrix,S+.

S+ =

C∑

k=1

α(k)S(k), (4)

whereα is the first eigenvector ofN− 1
2 XT XN− 1

2 , andN

is the diagonal matrix with diagonal terms ofXT X.
The remaining part is the same as MDS or Isomap. Pro-

jection to this compromised manifoldY is executed by Eq.
(5) after eigen-decomposition,S+ = V ΛV T ,

Y = V Λ
1
2 , (5)

where columns ofV and diagonal elements ofΛ are eigen-
vectors and eigenvalues ofS+, respectively.

Here, Abdi et al. tried to find the best space to project
the data set. However, because they used just the first lin-
ear principal component ofX, they lose some information
residing in the other components. Especially, when the prin-
cipal component is nonlinear, it will lose more informa-
tion. We experiment with the same data set as in Abdiet
al. (2005), and discuss the differences with our approach in
”Discussion”.

The Algorithm: RAMS
To overcome the limits stated above, we need a more gen-
eral method for nonlinear cases or for more than two mani-
folds. We introduce a new approach,random walk on multi-
ple manifolds (RAMS), to find one manifold from multiple
measurements. The connection between random walk and
manifold has been mentioned in many papers (Szummer &
Jaakkola 2002; Hamet al. 2004; Kondor & Lafferty 2002).
Let G be a weighted graph withN nodesV and edgesE, to
represent a manifold. Then, the distance between two nodes
on thekth manifold,D(k)

ij , can be transformed into probabil-

ity P
(k)
ij which is the transition probability from theith node

to thejth node on thekth manifold, which can be given by

P
(k)
ij =

1

Z
(k)
i

e
−

D
(k)2
ij

σ(k)2 , (6)

whereZ
(k)
i is a normalization term so that the sum of tran-

sition probabilities from theith node to all its neighbors on
thekth manifold is 1, andσ(k) is a parameter representing
the variance.

Given C dissimilarity matrices,D(1),D(2), · · · ,D(C),
we can getC probability matrices,P (1),P (2), · · · ,P (C).
We assume that these dissimilarities are measured indepen-
dently. Note that we are not assuming that these dissimilari-
ties make up orthogonal manifolds. Based on these assump-
tions, the compromised probability matrixP ∗ is calculated



as

P ∗
ij =

1

Z∗
i

C∏

k=1

P
(k)
ij , (7)

whereZ∗
i is a normalization term given byZ∗

i =
∑

j P ∗
ij .

Eq. (7) represents the probability for transition from theith
node to thejth node on the target (or compromised) mani-
fold. FromP ∗, we reconstruct the compromised dissimilar-
ity D∗ again.

D∗
ij = σ∗

√
− log(P ∗

ij), (8)

which is the statistical distance from all the individ-
ual manifolds. Here, we haveC + 1 parameters,
σ(1), σ(2), · · · , σ(C), σ∗, and we obtain these parameters us-
ing the following equations:

σ(k) =
1

N2

N∑

i=1

N∑

j=1

D
(k)
ij , (9)

σ∗ =
1

C

C∑

k=1

σ(k). (10)

After gettingD∗, the rest is the same as kernel Isomap
(Choi & Choi 2007). We calculate the kernel matrix from
the compromised dissimilarity matrix.

K = −
1

2
HD∗2H. (11)

As in kernel Isomap, we make the kernel matrix positive
definite by adding a constant,c.

K̃ = K(D∗2) + 2cK(D∗) +
1

2
c2H, (12)

wherec is the largest eigenvalue of the matrix
[

0 2K(D∗2)
−I −4K(D∗)

]
. (13)

Eq. (12) implies substituting̃D
∗

for D∗ in Eq. (11), which
is given by

D̃∗
ij = D∗

ij + c(1 − δij), (14)

which makes the matrixK to be positive semi-definite. The
termδij is the Kronecker delta. Finally, projection mapping
Y is given by Eq. (15) after eigen-decomposition,̃K =
V ΛV T .

Y = V Λ
1
2 . (15)

Relation to Previous Work
In RKKS, in the case of two distance matrices, the compro-
mised distance matrixD∗ is obtained implicitly from Eq.
(1) and is given by

D∗
ij =

√
D

(1)2
ij − D

(2)2
ij . (16)

It is not easy to compare Eq. (16) directly to DISTATIS
or RAMS because it uses negative eigenvalues even though
D∗2 is a linear sum ofD(1)2 andD(2)2 as in DISTATIS.

From the RKKS theory, however, ifD(1) is orthogonal to
D(2), which means two distances are uncorrelated, RKKS
works, otherwise it has some distortion in the compromised
manifold. Generally, two measurements will be correlated
and this approach has some distortion on the final manifold.
On the other hand, RAMS does not assume that two mea-
surements are orthogonal. One assumption in RAMS is that
two distances are measured independently, which is gener-
ally true. So, even with correlated distance matrices, RAMS
works well.

In DISTATIS, the compromised distance matrix,D∗, is
obtained implicitly from Eq. (4) and given by

D∗
ij =

√√√√
C∑

k=1

α(k)
D

(k)2
ij

λ
(k)
1

. (17)

Eq. (17) shows thatD∗2 is a linear sum of each squared dis-
tance matrix as in the RKKS method, whereα(k) gives the
weight of the normalized distance matrix. In other words, it
represents the importance of the individual manifold.

On the other hand, in RAMS, before adding the constant
c in Eq. (14), the compromised distance matrixD∗ is ob-
tained explicitly as in Eq. (8) and is given by

D∗
ij =

1

C

C∑

t=1

σ(t)

√√√√log Z∗
i +

C∑

k=1

log Z
(k)
i +

D
(k)2
ij

σ(k)2
. (18)

In Eq. (18), the distance is calculated in a statistical way,
where some variables such aslog Z∗

i +
∑C

k=1 log Z
(k)
i re-

flect how much related theith point is to others on the com-
promised manifold. To compare with Eq. (17), if the nor-
malization terms are 1, which means data points are already
distributed in a well normalized form, thenD∗2 is a linear
sum of each squared distance matrix as in Eq. (17).

RAMS is generally better than DISTATIS, especially
when the compromised manifold is nonlinear. For example,
let A,B, andC be three points with two distance matrices
and the distance betweenA andC is longer than the dis-
tance betweenB andC in both distance matrices. However,
if A andB on each individual manifold are located on a per-
pendicular line from the compromised manifold, then the
distance betweenA andC will be the same as that between
B andC on the compromised manifold represented byD∗.
But in RAMS, if one distance is longer than the other in
both distance matrices, the former will be definitely longer
than the latter on the compromised manifold. The reason
for this difference is that DISTATIS uses a linearly compro-
mised manifold that discards the other components except
for the first principal component, whereas RAMS uses sta-
tistical distance as in Eq. (8).

Usually, the manifold made by a distance matrix is curved
in high dimensional space and then the first components of
the manifolds is not enough to contain the proper informa-
tion. This is the reason why DISTATIS has some problems



with nonlinear manifolds. However, RAMS does not depend
on the linear structure of distance matrices but depends on
the statistical structure. This makes RAMS robust even with
nonlinear manifolds.

Projection Property
Since RAMS uses kernel Isomap after obtaining the com-
promised distance matrix, RAMS inherits the projection
property of kernel Isomap (Choi & Choi 2007). The gen-
eralization property (or projection property) of the kernel
Isomap involves the embedding of test data points in the as-
sociated low-dimensional space. In other words, generaliza-
tion property means the ability to determine a pointyl em-
bedded in the low-dimensional space, given a test data point
xl. The generalization property naturally emerges from the
fact thatK̃ (geodesic kernel with the constant-shifting em-
ployed in kernel Isomap) is a Mercer kernel. Due to limited
space, we do not derive the equations for projection here.
The derivations are similar to those in the previous section
and in Choi & Choi (2007).

Experiments
In order to show the useful behavior of our method, we car-
ried out experiments with three different data sets: (a) disc
data set made of 100 discs with different colors and sizes;
(2) head-related impulse response (HRIR) data (Algaziet
al. 2001); and (3) face data (Abdiet al. 2005).

Discs
We made an artificial data set to show the differences be-
tween the three methods: (1) RKKS, (2) DISTATIS, and (3)
RAMS. Fig. 1 shows 100 discs, where the horizontal axis
represents color and the vertical axis represents size. Ac-
tually, 100 points were generated on a10 × 10 lattice with
added random noise in location.

Figure 1: Disc data set

Let X ∈ R
2×100 be the discs’ locations. The first row

X1 and the second rowX2 are the coordinates for color
and size, respectively. From this disc data set, we made 3
pairs of measurements: (1) Orthogonal and linear case, (2)
correlated but still linear case and (3) orthogonal but nonlin-
ear case. Each case is calculated by the following equations.

(1) Orthogonal and linear: Each distance matrix is ob-
tained by only color or size, respectively,

D
(k)
ij = dist(Xk,i,Xk,j),

wherek = 1, 2, anddist(x, y) is the Euclidean distance
function between two pointsx andy.

(2) Nonorthogonal and linear: one distance matrix is
based on only color, and the other is based on both color
and size;

D
(k)
ij = dist(X1:k,i,X1:k,j).

(3) Orthogonal and nonlinear: Each distance matrix is ob-
tained by only color or size, respectively, and squared.

D
(k)
ij = dist(Xk,i,Xk,j)

2,

Orthogonal and linear case All three methods found 2
dominant eigenvalues. RKKS uses positive and negative val-
ues. Due to limited space, no figure is presented, but all three
methods had no problem in finding the relative locations of
the discs. In this case, two distance matrices are uncorre-
lated and each distance is obtained linearly. So, RKKS and
DISTATIS also work well as well as our RAMS.

Nonorthogonal or nonlinear cases When the distances
are measured nonorthogonaly or nonlinearly, RKKS and
DISTATIS failed to find true locations, even though they are
able to estimate along one coordinate, either size or color,
but not both. Fig. 2 is the result of correlated but linear case.
As we expected, RKKS found just one coordinate (size) and
failed to find the color axis. On the other hand, RAMS still
found proper coordinates as DISTATIS also did.

(a) (b)

Figure 2: Projections with (a) RKKS and (b) RAMS, in the
case of nonorthogonal and linear distances. RKKS finds the
size axis but fails to find the color axis, whereas RAMS finds
both successfully.

Fig. 3 is the result of nonlinear but orthogonal case. In
contrast to the linear and nonorthogonal case, DISTATIS
found the size axis but failed to find the color axis, whereas
RAMS found proper coordinates as RKKS also did.

Head-Related Impulse Responses (HRIR)

In this experiment, we used the public-domain CIPIC HRIR
data set. Detailed description of the data can be found in Al-
gazi et al. (2001). It was recently shown in Duraiswami &
Raykar (2005) that the low-dimensional manifold of HRIRs
could encode perceptual information related to the direction
of sound source. However, there has been no attempt to use
both the left and the right HRIRs at the same time. We ap-
plied the kernel Isomap to both left and right, and then tried
to merge the two dissimilarity matrices into one with the
three methods (RKKS, DISTATIS, and RAMS).



(a) (b)

Figure 3: Projections with (a) DISTATIS and (b) RAMS, in
the case of orthogonal and nonlinear distances. DISTATIS
finds the size axis but fails to find the color axis, whereas
RAMS finds both successfully.

Figure 4: Two-dimensional manifolds of HRIRs: (left) Left
HRIR; (right) Right HRIR. Each ear has similar informa-
tion with a little distortion. This is the result from the 10th
subject.

Two-dimensional manifolds of HRIRs are shown in Fig.
4 for kernel Isomap, where each ear has similar informa-
tion, with a little distortion. RAMS and DISTATIS found
two dominant eigenvalues of HRIRs because the manifold
of each ear’s HRIR is almost linear (see Choi & Choi 2007),
whereas RKKS failed because these two pieces of informa-
tion from the two ears are strongly correlated. Fig. 5 shows
the embedded manifolds of the two methods and confirms
the result. RKKS did not work here, so the results are not
shown.

(a) (b)

Figure 5: Projected results on compromised 2-dimensional
manifold from (a) DISTATIS and (b) RAMS. Both work
well.

Faces
We used the face data set from Abdiet al. (2005), to compare
RAMS with DISTATIS. Abdi et al. (2005) made 4 distance

matrices and found a 2-dimensional space to represent 6 face
images.

Table 1: Efficiency of eigenvalues.

Methods First Eigenvalue Second Eigenvalue
DISTATIS 47.75% 20.74%

RAMS 63.67% 19.04%

Table 1 compares the 2 top eigenvalues from the two
methods, DISTATIS and RAMS, showing that RAMS is
more efficient. Fig. 6 shows the 2-dimensional spaces from
the two methods. Even though they have similar results,
RAMS produces a little more spread map, because RAMS
uses all information whereas DISTATIS uses only the first
component of the compromised manifold and discards the
rest.

(a) DISTATIS

(b)RAMS

Figure 6: Projections of faces.

Projection Property
Since RAMS inherits the projection property of kernel
Isomap, the result of this experiment is promising. We just
checked with 3 cases of discs above. We used 100 train-
ing data points as in Fig. 1, and 100 test data points gener-
ated in the same way as the training points. In Fig. 7 (a),
blue crosses are training data points and colored and differ-
ent sized discs are test data points in the original space. We



projected the test data points into the compromised manifold
of the training data based on the two distance matrices. Fig.
7 (b),(c) and (d) show the result of projection in RAMS in
all three cases. As expected, RAMS successfully projected
the test data points on the compromised manifold in all three
cases.

(a) (b)

(c) (d)

Figure 7: Training data set (blue crosses) and test data set
(colored and differently sized discs) are shown. Test of the
projection property of RAMS with (a) orthogonal and linear,
(b) nonorthogonal and linear, (c) orthogonal and nonlinear,
and (d) nonorthogonal and nonlinear cases show good map-
ping along both the color and the size axes.

Discussion
In RKKS, even though two measurements are obtained in-
dependently, if their values are affected by each other, then
the final manifold is distorted because RKKS assumes that
the two Hilbert spaces are orthogonal. However, in RAMS,
even though the measurements are related to each other, it
gives a proper mapping because the two dissimilarity matri-
ces are measured in a statistically independent way. Another
interesting issue is that in RKKS, it is not straightforwardto
extend the number of measurements to more than 2, while
RAMS can be naturally extended.

DISTATIS uses the principal component of the manifolds
to project data sets into the compromised manifold. That re-
sults in loss of information that could be found in the other
components. When the distances are measured nonlinearly,
such as in squareness, DISTATIS fails to find a proper map-
ping, because nonlinear manifold does not guarantee that
one linear component of manifolds can contain most of the
information. However, in RAMS, the final manifold is not
a linear combination but rather a probabilistic combination,
so it is robust even with nonlinear manifolds.

More interestingly, RKKS and DISTATIS are not con-
cerned with the projection property, while RAMS is. So,
RAMS can be considered as the generalization of RKKS and
DISTATIS.

Conclusion
Many algorithms have been developed in the past to find a
low dimensional manifold from data sets. However, tech-
niques for finding one manifold from multiple measure-
ments have not been fully explored. In this paper, we pro-
posed a new algorithm,RAMS, to address this gap and com-
pared it with other existing methods: RKKS and DISTATIS.
Those previous algorithms have some limitations or need to
be generalized. Our algorithm, RAMS, is a generalization
of previous methods and also possesses a desirable projec-
tion property as in kernel Isomap. Experimental results con-
firmed the performance and the desirable projection prop-
erty. Also, RAMS can be applied to finding one feature set
from several similar feature sets. An interesting direction
for future work would be to compare with other data fusion
theories and extend this algorithm.
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