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Abstract

Matrix factorization is a popular method for collaborative predic-
tion, where unknown ratings are predicted by user and item factor
matrices which are determined to approximate a user-item matrix
as their product. Bayesian matrix factorization is preferred over
other methods for collaborative filtering, since Bayesian approach
alleviates overfitting, integrating out all model parameters using
variational inference or sampling methods. However, Bayesian
matrix factorization still suffers from the cold-start problem where
predictions of ratings for new items or of new users’ preferences are
required. In this paper we present Bayesian matriz co-factorization
as an approach to exploiting side information such as content infor-
mation and demographic user data, where multiple data matrices
are jointly decomposed, i.e., each Bayesian decomposition is coupled
by sharing some factor matrices. We derive variational inference
algorithm for Bayesian matrix co-factorization. In addition, we com-
pute Bayesian Cramér-Rao bound in the case of Gaussian likelihood,
showing that Bayesian matrix co-factorization indeed improves the
reconstruction over Bayesian factorization of single data matrix.
Numerical experiments demonstrate the useful behavior of Bayesian
matrix co-factorization in the case of cold-start problems.

%o be presented at ECML-PKDD-2011.
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1 Introduction

Matrix factorization is a method for seeking a low-rank latent structure of data, approxi-
mating the data matrix as a product of two or more factor matrices. Matrix factorization is
popular for collaborative prediction, where unknown ratings are predicted by user and item
factor matrices which are determined to approximate a user-item matrix as their product
[6, 8, 4, 5, 11, 2]. Probabilistic matrix factorization was introduced in [8], in which a linear
model with Gaussian observations was considered to learn user-specific and term-specific
latent features, which became equivalent to the minimization of sum-of-squared errors with
quadratic regularization terms. Bayesian approaches to matrix factorization are proposed
based on the approximate inference such as the variational inference [4] or sampling [7], since
the exact inference for the probabilistic model is intractable. Bayesian matrix factorization
is preferred over other methods for collaborative filtering, since Bayesian approach alleviates
overfitting by integrating out all model parameters.

Collaborative prediction algorithms suffer from the cold-start problem, where the users
or items do not have sufficient number of given ratings. The cold-start problem commonly
occurs in applying collaborative prediction in the practical problems because new users and
new items, which has no previously given ratings, are continuously added to the system.
Moreover, the users do not have high intention to rate the items remain in the system
with small number of ratings of their own. The prediction accuracy of the collaborative
prediction algorithm is seriously degraded because the algorithm only exploits the ratings
given by the target users or items. To remedy the cold-start problem, efficient use of side
information, such as item content information and user demographic information is crucial.
Constrained probabilistic matrix factorization [8] is a representative method to incorporate
side information into collaborative prediction based on matrix factorization, but it does not
have clear relationship between the entity-relationship model of the whole data, so exploiting
various kind of side information is not straight-forward.

Matrix co-factorization provides a way to systematically exploit the side information
from the additional matrices. Matrix co-factorization jointly decomposes multiple data
matrices, where each decomposition is coupled by sharing some factor matrices. Matrix co-
factorization has been used to improve the performance of matrix factorization by incorpo-
rating knowledge in the additional matrices, such as label information [16], link information
[17], and inter-subject variations [3]. One of the advantages of the matrix co-factorization
is that it can be applied for the general entity-relationship models of the target data and
the additional data [9, 14], where the factor matrices correspond to the entities and the
input matrices correspond to the relationships of the model. Since the entity-relationship
model is a fundamental tool to model the relational data, this simple mapping between the
entity-relationship model and the co-factorization model enables the straight-forward use
of various kind of side information, especially for the cold-start problems where both the
user side information and the item side information are required. Recently, Cramér-Rao
bound (CRB) was computed for matix co-factorization with Gaussian likelihood on com-
pressed sensing, showing that CRB is improved over matrix factorization, in the sense of
reconstruction error when side information is incorporated into co-factorization [15].

We present a Bayesian matrix co-factorization (BMCF) to exploit side information, such
as content information and user demographic data, into collaborative prediction problem
to remedy the cold-start problems. We derive variational inference algorithm for BMCF.
Sampling method is another possible approach for the BMCF [10], however the posterior
computation requires storing multiple number of samples which is not appropriate for the
large-scale collaborative prediction problems. A variational Bayesian approach for matrix
co-factorization was mentioned in [13] without any details, so in this paper we provide the
descriptions of the specific probabilistic model and the computation of variational posteriors,
hyperparameters, and the predictive distributions.
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In addition, we compute Bayesian Cramér-Rao bound (BCRB) for the BMCF model.
BCRB provides a lower bound on the variance of any parametric estimators, even for the
unbiased ones [12]. We compute the bound for the reconstruction error based on the BCRB,
to show that BMCF indeed improves the reconstruction over Bayesian matrix factorization
(BMF) of single data matrix. Numerical experiments confirm the improvements of the
theoretical performance from BCRB, and demonstrate the useful behavior of BMCF in
cold-start cases.

2 Bayesian Matrix Co-Factorization

The simplest case of matrix co-factorization deals with two input matrices, namely, the user-
item rating matrix X € R’*7 and the user-demographic information matrix Y € RI*K,
The input matrices are decomposed into the products of the following form,

X ~ UV,
Y ~ U'W,

where U € RP*! is the user factor matrix, V' € RP*7 is the item factor matrix, and
W € RP*X is the demographic factor matrix. The user factor matrix U is shared in both
decompositions, which makes it to be learned from the side information Y as well as the
target ratings X . The use of information in Y makes possible to predict meaningful ratings
where X has extremely small number of given ratings.

To set up the probabilistic model for the co-factorizations, each element of the input
matrices is modeled with the additive Gaussian noises, such as

Ty = u v+ 61(-;5), for all (i,7) € O®),
vk = uj wy+ EEZ), for all (i, ) € OW,

where u; represents the i-th column of U, v; represents the j-th column of V, and wy

represents the k-th column of W. O®) and O denote the set of all indices of observed
(;c) (Z) are modeled with the

elements in X and Y, respectively. The additive noise ¢;.’ and e

Gaussian distribution, such as

7, 7

ey~ N0, p"),
eW o~ NEW0, p®),

where N (z|u, p) represents the Gaussian distribution with mean p and the variance p, and
p®) and p®) represent the noise variances for X and Y, respectively. Then, the likelihood
of the co-factorization is modeled as

pX,Y|U,V,W) = pX|U,V)p(Y|U,W)
= I Neglulv o) TI Nlulwe,p®).
(i,§) €O @) (i,k)eOW)

The prior probabilities for the factor matrices are modeled with Gaussian,

pU) = [[N(wilo, =) =[] [TV (uailo, 05",
7 d 1

[TV (w;10,5®) = T TV (w10, 057,

J d j

pW) = J[N(wilo,5™) = [T TNV (warl0. o5,
k d k

=
=
I



2.1 Updating Factor Matrices Bayesian Matrix Co-Factorization 5

E(V) E(u) Z(W)
| i |
} {

O G N @)

jEJ xij y,-k kEK
iel

k

(x) y
pX p(})

Figure 1: The graphical model representation of the Bayesian matrix co-factorizations, where
a side information matrix Y is available with the target matrix X.

where £ 2™ and %) are the diagonal covariance matrices with the d-th diagonal
element p((iu), pg}), and pglw), respectively. Fig. 1 shows the graphical model representation
of the probabilistic model.

We use the variational Bayesian approach to compute the posterior probability of each
factor matrix. The lower-bound of the log of the marginal likelihood is computed by the

Jensen’s inequality with the functional F(g) of the auxiliary function ¢(U,V, W), such as

XY
logp(X,Y) = 1og///q(U,V,W)p( q’(U’g"‘/‘//ﬁ)W)dUdVdW

///q(U,V,W)logp(X’Y’U’V’W)dUdVdW
F(q).

Y

(U, V,W)

In the variational Bayesian framework, we assume that the auxiliary function is further
factorized into

qU,V,W) = q.(U)qu(V)qu(W),
leading to

p(X,Y,U,V,W)
¢u(U)qu(V)quw(W)

Flawantn) = [ [ [ a@)au(V)a (W) g AUV AW,

and —F(qu, qv, Guw) is referred to as variational free energy.

2.1 Updating Factor Matrices

In the variational Bayesian framework, the variational posteriors of the factor matrices U,
V and W are computed with the following iterative updates,

0U) = o exp By {logp(X, ¥, UV, W)}, (1)
(V) = o esp[Euw {ogp(X, Y, UV, W)} ¢l

qw(W) = ZL eXp [EU,V {1ng(Xa Y.U,V, W)}] : (3)
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To compute the variational posterior ¢,(U), the expectation over V and W is computed
for the terms related to U, which is written by

IEV,W {lng(X, Y7 Ua Va W)}

1 -1 1 1
= —52 uZT (2(“)) +p(z) Z <vjv;—>+w Z <’wkw;;r> Uu;

J1(4,9) K| (i,k)
- co@ cOW
1 2 1 AN 1 ) T _ C
75 Z B p(z) Z Lij <UJ> + p(y) Z Yik <wk> u; | +0C,
g J1(5,5) K| (i,k)
L co®) cOW

where (-) represents the expectation. From (1), the derivation leads to the variational
posterior of U in the following form,

0. (U) ~ [TV (il @),

where
—w) _ g [ L N _
u = @ P Z zij (v5) + o) Z Yik (W) |
Jl(i,5)eO0®) k| (i,k)eO®)
(@(u))—l _ (E(u))—l L 1 Z <'v"v—-r> + i Z <’wkwT>
' p(z) 773 p(y) k /-
il(i,5)e0@) k| (i,k)eO®)

As stated before, the user factor matrix is updated by using the side information matrix Y,
as well as the rating matrix X, which enables the learning in the cold-start situation where
X has no given ratings for some users.

The variational posteriors for the factor matrices V' is computed from (2), which becomes

(V) = [[N;a}”, &),
J

where
(v v 1
i|(i,5)€ 0@
@\t A T
(q’j ) - (2( )) T @ Z (wig ).
i|(i,7)€ 0@

Similarly from (3), the variational posterior of W is computed by

4w (W) = [[ N (wifal™, &),
k

where

—(w (w) [ _1
u; ) ®, P g vk (w) |,
i|(i,k) €O W)

(q,gcm)‘l _ (gm)‘ﬁﬁ S ().

i|(i,k) €O W)
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The sufficient statistics for the above posteriors are easily computed by using the prop-
erties of the Gaussian distribution. The sufficient statistics for u; are computed as

(wu]) = @ +aa’,

i

and the sufficient statistics for v; and wy, are computed in the similar forms.

2.2 Learning Hyperparameters

We use the empirical Bayes estimation to update hyperparameters p(*), p(), E(“), »®) and
2 The variational free energy JF(qu, ¢v, Gw) is used to compute the point estimate of the
hyperparameters.

Taking derivative of the variational free energy with respect to p(*) leads

OF (qu; @, qw) N@ 1 1 T\
o) _ N2 L 15~ uTe)?)
() 2 @) (z))2 J v I
9p p 2p) |, Seow
where N(*) represents the total number of observed entries in the matrix X. Then, p(®) is
computed by

e ﬁ S e 2o )T (o) + b ((ws] ) (o0])) )

(4,5)€0@)

where tr(-) represents the trace of the matrix. The update for p®) is computed in the same
way.

Taking derivative of F(qu, quv, qw) With respect to p((iu), which is the d-th diagonal element

of (™ leads

GI(QuaCIwa) I 1 1 [ T ]
— T =yt | (wi )|
apg ) 2 PEI ) 2 (pfi“))2 dd

and set this to be zero leads the update
w _ 1 S (]
Pa - I u;u, > .
i dd
The above update is re-written for =™ in the following form,

n@ fddlag <Z <uzu:>> ;

2

where ddiag(A) represents the diagonal matrix consisting of the diagonal elements of the
matrix A. The update for £(*) and ™) are derived in the similar way.

2.3 Predictive Distribution

There are two kinds of prediction tasks in the collaborative prediction problem: the hold-
out prediction and the fold-in prediction. In the hold-out prediction, we want to predict a
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missing entry x;-j~ in the input rating matrix X, where (i*,7*) ¢ O®). Then, the predictive
distribution is calculated as

plas | X) = / P+ [U V)G (U) g5 (V) AU AV

= N(@imje| (ug) " (0, p@).

Therefore, the prediction becomes the product of corresponding columns of factor matrices,
which is :i'l*]* = <’l.l,71»«>T <’Uj*>.

In the fold-in prediction, we want to predict the rating value of new users or items. If we
want to predict the rating z;+ ;« for the new user iT, the predictive distribution is computed
by

p(x;

i+5Y5y7,+ /// Z+j |’u,z+ ’U] ) (ui+|vvmi+7Wayi+)
p(U,V,W|X,Y)dUdV dW du+.

The predictive distribution depends on the posterior distribution of the new factor, which
is computed by using the Bayes’ rule,
logp(u;+ |V, @i+, W, y,4)
= logp(@;+|V,us+) + log p(y;+ W, ) +logp(u+ ) + C
log N (u+ [T, @),

where
@) w) ', 1 T 1 .
((I)“ ) - (2 ) + (@) Z (vjvj ) + p) Z (wrwy, ),
jl(it.5)e0® k| (it k)eO®)
al = el @ > ey <”i>+w Yo yerr (wi)
il(it.5)eo@ k|(i+,k)eO®)

This posterior indicates that the prediction is computed based on the observed ratings in a;+
and the additional information y,+, which makes the prediction in the cold-start situation
possible. The unknown ranking in the fold-in case is predicted with the posterior distribution

by x4+ = (wi+) " (vj+), where (u;+) = ugi)

2.4 BMCF for General Cases

So far we considered the simplest example of the co-factorization, which has three entities:
user, item, and user demographic information, and two relationships: user-item ratings and
user-demographic information. We generalize the results for the arbitrary entity-relationship
model by mapping the entities to the factor matrices and relationships to the input matrices.
In this way, co-factorization model is directly induced from the entity-relationship model of
data, which enables straight-forward use of various kinds of side-information.

The entity-relationship model consists of entities, attributes for the entities, and re-
lationships between the entities. For the one-to-one correspondence between the entity-
relationship model and the co-factorization model, we eliminate the use of attributes by
modeling them as a separate entity having relationship with the corresponding entity. Then,
we use the entity-relationship model consists of the set of entities £ and the set of relation-
ships R. The co-factorization model is built with the input matrices X (@) for all relation-
ships (a,b) € R and and the factor matrix U@ for all entities a € £. If we use the indices
for a-th entity as i,, the matrix co-factorization model is written by

N O (b) 1 el@®) for all (a,b) € R, (iq, i) € o)

ialp za ialp
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where O(*?) represents the set of all observed entries in X (a’b), and we used the additive

(@) having distribution

Gaussian noise €, ;
alb

E(_a,b) -~ N(E(_a,b) |0’ p(a,b)),

Zaib la ib

where p(®?) represents the noise variance, which leads the Gaussian likelihood. The prior
for each factor matrix U@ is modeled as Gaussian with zero mean and the variance pfla).
The graphical model representation of the general matrix co-factorization is shown in the
Fig. 2. The probabilistic model, update of factor matrices and hyperparameters, and the

predictive distributions are summarized in Table 1.

3 Bayesian Cramér-Rao Bounds for Bayesian Matrix
Co-Factorization

The Cramér-Rao Bound (CRB) places a lower bound on the variance of unbiased estimator
for the deterministic parameters [1], as the inverse of the Fisher information matrix F, which
is written by,

E{-0)0-0)T}>F",

where 0 is the estimated parameter and 0 is the true value for it. Each element of the Fisher
information matrix is computed by

2
Fy = B {_M}

96;00;

The computation of Fisher information matrix mainly depends on the likelihood of the
model.

On the other hand, the Bayesian Cramer-Rao bound (BCRB) or Posterior Cramer-Rao
Bound [12] uses a different form of the Fisher information matrix, which depends on the
joint probability of the observation and the parameters,

02 logp(x, 0) }

T =Rao {_ 00,00, @
L}

In this case we use the prior probability, as well as the likelihood, to compute the Fisher
information matrix, and the expectation is also taken over the parameters. The benefit of

E(ﬂ) E(b)
(O,
uE:Q ul(_b )
(a,b) :
iel, Xi i el
(a,b)e R
(a,b)
Jo)

Figure 2: The graphical model representation of the Bayesian matrix co-factorizations in
the general case.
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Table 1: Model and the algorithms for the BMCF in general cases. We denote set of all input
matrices as X and set of all factor matrices as U. I(® represents the number of columns in
the factor matrix U(“), and NP represents the number of observed entries in the input
matrix X (%),

3 : a,b a)T (b a.
Likelihood | p(X|U) = [Tianyer i, icoen N [ul® Tul, pled)

1’Lb

Prior | p(U™) =TT, M(u{”[0, %) = [T, TT, M (uas, [0, o)

Posterior | ¢q(U“) ~ HMN( (a)|_(a) @(a)) where
—(a) _ (a,b) (b)
u;, = (I’ (Zb|(a b)ER Zzb|(za ip)€O(a:b) p(a  Ligip <uib >)
a)\ b b
ia (2( )) + Zb|(a,b)€7€ Zib|(iaaib)eo(a’b) p(a,b) <’LL( )u( ) >

/N
o
B

[

Sufficient <u£:)> = EE:)
statistics <uz(-:)uz(-:)-r @(a) + _(a)_(:)‘r

Parameters | p(@?) = 1% {( ) 9.(a:) <u(a)>T < >}
p N(@ D) 2a(iq,ip)€O(@:b) Lioip

+N(a D) Z(za ip) €O (@) {tr (< W iq ><u1b qu >)}

(@) — I(a)ddlag( . < (@) (G)T>)

T
Prediction Tixir = <uz(-f)> < Z(Z’)>
In the fold-in case, using

<“E§)}1: ‘I’E? (chll(a,c)en (pm;) Die|(iz ie)eO@ o) Tizic <uic>))
(‘ng)) = (E(a)) + 2 el(@e)er (ﬁ D il (iz ie)€O@©) <“§C)“§C)T>)

using BCRB over CRB is that the BCRB is known to provide a lower bound on the variance
of any parametric estimators, even for the unbiased ones [12]. In this section we use the
BCRB to show the improvement of theoretical bounds of the proposed co-factorization model
over the standard matrix factorization model.

3.1 Computation of Fisher Information Matrix

To compute the BCRB for the matrix co-factorization model, we rearrange the factor ma-
trices to be a parameter vector. For example, if we have two factor matrices U and U(b),
the parameter vector 8 becomes

a)T a)T (b)T b)T
6 = [ul” "'UE,(z) ul? "'u%) 17,

where I(®) represents the number of columns in the factor matrix U™, Then, each element
of the Fisher information matrix is computed as (4). The log joint probability of BMCF is
computed as the sum of log-likelihood and log priors (Table 1).
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% logp(X,U) .
3.1.1 Casel(#a((](b)))-

In this case, we take the first derivative of the log joint probability with respect to a param-

eter ufﬂl* in the factor matrix U(“), which becomes,

dlogp(X,U)
6u£ﬁ)i*
_ L (0:0),,() 1 MO L (a)
- Z [p(a’c) Lixg, Ugri, — Ui, Z udz* udz ) ud*i;’
c|(a,c)ER P+

ie|(ific)eO(@e)

where X is the set of all input matrices and U is the set of all factor matrices. If we take

the second derivative with respect to the parameter from the different factor matrix U(b)7
(b)

which is udﬂ_;, it is written as

0? 10gP(X U L @ o
o (a) b (©] - Z p(a b) ud*z*uﬁi;r ’
Uariy Wiy (i5,if )€O @

for d* # d*. If d* = d*, the second derivative is written as

9 log p(X,U) a0 (@), ®) I @,
= u Ugnin Wit | -
oul, o) <Z-*ZZ-+> p“”’ Z iz ai ) T plan i
cot@n

The expectations of above second derivatives vanish, so the elements of Fisher information
matrix corresponding to the part also become zero.

3.1.2 Case Il (%)2

The second derivative with respect to the element ué @)

vanishes if ¢ #i*. If if =% and dt # d*,

from the same factor matrix U ®

9?logp(X,U) 1 o) (e
Pl — -y o X

(a) (a)
Mgy OU oy cl(a0)eR e (% i) €O(@0)

but the expectation of it vanishes.
The only nonzero second-derivative value is arisen if we differentiate with the same
element from the same matrix, that is, in the case of it = i* and d™ = d*, which becomes

9?logp(X,U) Z 1 Z © \? 1
a a = = a,c ud*ic (@
aufi*)zzaugi*)zz cl(a,c)eER pl) il (i} ,ic)€O(@:e) ( ) PSI*)

The Fisher information matrix is computed as

(asc) (c)
Ex _Plogp(X.U) | _ 3 NiyPa- 4 1 (5)
(a) (a) o a,c a)’
3%*1';3“(1*1'; cl(a,c)eR ple) pt(i*)

where Ni(f <) represents the number of observed entries in the ¢}-th column of the matrix

X (%9 Because the only nonzero values come from the differentiating with the same pa-
rameter, the Fisher information matrix becomes a diagonal matrix.
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If we use the standard matrix factorization, where there exist only two entities {a, c}
and one relationship, the diagonal elements of Fisher information matrix is computed as

e | s | NETE 1
YUY T 50 @ @ T o) (@)
ixdr Oz a- Pa~

which is obviously smaller than the Fisher information matrix of the matrix co-factorizations.
Exploiting additional matrices in the co-factorization model increases the Fisher information
matrix as the number of observed entries grows larger, which lowers the CRB (the inverse
of the Fisher information matrix).

3.2 Computing Reconstruction Error

The major difficulty regarding BCRB in matrix factorization is the non-uniqueness of the
matrix decomposition. Instead of directly using the BCRB, we consider the reconstruction
error £;;, which is written as

& = E{(ziy—2y)°}
E{(Uiij —ﬁ?ﬁj)Q},

where £;;, %;, and ¥; are the ground-truth values, and z;; is the predicted value from
the estimated parameters u; and v;. Although the matrix decomposition is not uniquely
determined, the reconstruction error is the same for the decompositions having the same
likelihood. The reconstruction error is lower-bounded by using the BCRB, in a way that

= E {”a‘T(“i — ] ) (u; — ﬁz‘T)T”j} +E {ﬁj(”j —0;)(v; — ﬁj)Tﬁi}

+2FE {v;(ui — ﬁi)(vj — ’QA}J)T’&,ZT}

T AT LT LT o N2
i = E{(uivjfu v +U; v — U, vj)}

Y

E{o] [F71], v b+l [F1], a+ 2B {o] (w — @)(v; — 9;) 4] |

J
AT 11 & -1 -1 T =11 s
= o [FY, e (P, [F7),,) +al 77,
where [f _1]u_ represents the part of the inverse of the Fisher information matrix corre-
sponding to the parameter u;, which is a diagonal matrix whose elements consists of the

negative second derivatives of the joint probability with respect to w;.

4 Numerical Experiments

We performed two experiments with BMCF. First experiment computed the BCRB for the
matrix co-factorization model and matrix factorization model, and compared them with the
actual performance of the BMCF and BMF algorithms. Second experiment ran the BMCF
and BMF algorithm for the collaborative prediction problem, where the number of given
ratings were adjusted to simulate the cold-start situations.

4.1 BCRB Comparison on Synthetic Data

For the experiment comparing the reconstruction error computed from BCRB and the actual
performance of the algorithm, we generated synthetic data with four entities £ = {1, 2, 3,4}
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and three relationships R = {(1,2), (2,3), (3,4)}. The ground-truth factor matrices U'® &
R5%100 were generated from the Gaussian distribution with variance 1. The relationship
matrices were built from the factor matrices with additional Gaussian noise with variance
0.01. We chose the relation (2,3) as the target matrix, where half of columns have 50% of
observed entries, and the remaining columns have varying ratio of observed entries from 0%
to 90%. The other relation matrices had 50% of observed entries. To show the benefit of the
co-factorization, we compared the BCRB of the matrix co-factorization model with BCRB
of matrix factorization model which used the target relationship matrix only. The actual
performance was measured using the proposed BMCF algorithm and BMF algorithm. We
used the Root Mean Squared Error (RMSE) for the performance measure, which is computed
by

where r; represents the predicted value for the i-th test rating, 7; represents the true value,
and N is the total number of test data points. Fig. 3 summarizes the result of the exper-
iments. RMSE got better as the number of given ratings increases, both for the BCRB
and the actual performance of the algorithm. BMCF had lower bound and performance
compared to the BMF, and in this case the performance of BMCF was even lower than the
theoretical lower-bound of BMF.

5.0

—— BCRB(BMF)
- BMF
—+— BCRB(BMCF)
451 +  BMCF

4.0

RMSE

3.5

3.0

0 01 02 03 04 05 06 0.7 08 09
Ratio of given ratings

Figure 3: Comparison of the BCRB and the performance of the BMCF and BMF, averaged
over 10 different trials.

4.2 Collaborative Prediction in the Cold-Start Situation

We applied the proposed BMCF for the collaborative prediction problem in the cold-start
situations, and compared the performance with that of the BMF to show the benefit of the
BMCF. We used MovieLens data, which consists of the ratings of 943 users for the 1682
movies for the test. The ratings are given by the integer score from 1 to 5. MovieLens data
is packed with the additional user and movie information, which were used in the matrix
co-factorization.

We constructed the additional information matrices of users and items in the following
manner. User information consists of the age, gender, and occupation. The ages are parti-
tioned into 5 groups, which are: under 20, 21 to 30, 31 to 40, 41 to 50, and over 51. The
corresponding entry for the user was marked as the indicating value 1. The gender and
occupations were coded in the similar way, indicating the user’s gender and occupations by
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Table 2: Average MAE and RMSE results for different number of given ratings for each test
user. (a) Simulation of user cold-start case. (b) Simulation of user and item cold-start case.
We eliminate all ratings for 100 randomly chosen items to simulate item cold-start case.

(a) BMFE BMCF (b) BMF BMCF

MAE | RMSE | MAE | RMSE MAE | RMSE | MAE | RMSE
0 | 2.5403 | 2.7767 | 0.8238 | 1.0140 |[ 0 | 2.5098 | 2.7584 | 0.8843 | 1.0857
5 | 0.8281 | 1.0618 | 0.7895 | 0.9941 || 5 | 0.9333 | 1.2412 | 0.8332 | 1.0550
10 | 0.8032 | 1.0205 | 0.7446 | 0.9424 || 10 | 0.8956 | 1.1863 | 0.7778 | 0.9857
15 | 0.7474 | 0.9558 | 0.7426 | 0.9314 || 15 | 0.8991 | 1.1948 | 0.7716 | 0.9789
20 | 0.7421 | 0.9496 | 0.7348 | 0.9254 || 20 | 0.8618 | 1.1535 | 0.7527 | 0.9555

using the value 1. Movie information, which consists of the 18 category of the movie genres,
was also marked in the similar way. In the experiments, we used the user information matrix
and the item information matrix, as well as the user-movie rating matrix.

To simulate the cold-start situations for the users, we randomly chose 200 users in the
dataset for the test users and generated the training data with different number of given
ratings. Along with RMSE, we also computed the Mean Absolute Error (MAE) which is
computed by

1 N
MAE = N2|7‘i—7i|.

For each case, we randomly generated 10 different datasets, and ran the algorithm 10 times
for each dataset with different initial values, so performance was measured 100 times for
each case. Table 2(a) summarizes the averaged results for the experiments. BMF failed to
predict the ratings when the test users have no ratings at all, however BMCF predicted fairly
meaningful ratings for the case. The performance got better and better as the number of
given ratings increases, but in all the cases, BMCF showed better performance than BMF,
which showed the benefit of using side-information.

Another experiment was performed for the cases where some movies does not have any
ratings at all. We randomly selected 100 movies from the dataset and eliminate all the
ratings given for the movies. The averaged MAE and RMSE are summarized in Table 2(b).
In this more severe condition, the performance of BMF was seriously degraded from the
performance for the previous experiment. However, BMCF showed much better performance
than BMF for all cases, slightly less than the results of the previous experiment. The use
of the additional item information by using BMCF greatly helped the performance of the
prediction, especially in this kind of item cold-start (as well as user cold-start) cases.

5 Conclusions

We have presented Bayesian matrix co-factorization (BMCF) as an approach to incorporat-
ing side information into collaborative prediction, where multiple data matrices are jointly
decomposed, with some factor matrices shared over inter-related factorizations, in Bayesian
setting. We have presented variational inference algorithm for updating factor matrices, in
which variational posterior means and variances for factor matrices are iteratively updated.
Hyperparameters are determined by maximizing the marginal likelihood. We have calcu-
lated Bayesian Cramér-Rao bound for the matrix co-factorization model, stressing that the
co-factorization actually lowers the theoretical bound of the reconstruction error. Numerical
experiments demonstrated that Bayesian matrix co-factorization yielded the lower BCRB
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and improved the performance in collaborative prediction, compared to Bayesian matrix fac-
torization. Especially in the case of cold start problems, Bayesian matrix co-factorization led
to the satisfactory performance, while Bayesian matrix factorization failed to make proper
predictions.
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