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Abstract—Hashing refers to methods for embedding high-
dimensional data into a similarity-preserving low-dimensional
Hamming space such that similar objects are indexed by binary
codes whose Hamming distances are small. Learning hash func-
tions from data has recently been recognized as a promising
approach to approximate nearest neighbor search for high-
dimensional data. Most of ‘learning to hash’ methods resort
to either unsupervised or supervised learning to determine
hash functions. Recently semi-supervised learning approach
was introduced in hashing where pairwise constraints (must-
link and cannot-link) using labeled data are leveraged while
unlabeled data are used for regularization to avoid over-fitting.
In this paper we base our semi-supervised hashing on linear
discriminant analysis, where hash functions are learned such
that labeled data are used to maximize the separability between
binary codes associated with different classes while unlabeled
data are used for regularization as well as for balancing
condition and pairwise decorrelation of bits. The resulting
method is referred to as semi-supervised discriminant hashing
(SSDH). Numerical experiments on MNIST and CIFAR-10
datasets demonstrate that our method outperforms existing
methods, especially in the case of short binary codes.

Keywords-Hashing, regularized discriminant analysis, semi-
supervised learning.

I. I NTRODUCTION

Similarity search, which involves finding nearest neigh-
bors of a query, is a core problem in various areas, including
machine learning, computer vision, information retrieval,
and data mining to name a few. Especially, ever-increasing
availability of image data on the Web entails the need of
scalable search of relevant images. For instance, content-
based image retrieval (CBIR) takes an image as a query and
returns its nearest neighbors, computing similarity between
image descriptors (features) of the query and of an image
in database. A naive solution to nearest neighbor search is
linear scan where all items in database are sorted according
to their similarity to the query, requiring linear complexity.
However, this approach is not scalable in practical applica-
tions.

Approximate similarity search has been studied to handle
the scalability, where we trade accuracy for computational
speed-up. In earlier work [1], [2], spatial partitions of
data space was exploited via various tree structures. While
tree-based space partition approach is successful for low-

dimensional data, its performance is not satisfactory for
high-dimensional data and does not guarantee faster search
compared to linear scan [3]. In the case of CBIR, image
descriptors (such as SIFT [4] and GIST [5]) constitute high-
dimensional vectors, so tree-based space partition approach
is not preferred in such applications.

Hashing refers to methods for embedding high-
dimensional data into a similarity-preserving low-
dimensional Hamming space such that similar objects
are indexed by binary codes whose Hamming distances are
small. Hashing is known to be better suited to approximate
similarity search for high-dimensional data. A notable
data-independent method islocality sensitive hashing
(LSH) [3] where random projections followed by rounding
are used to generate binary codes such that two objects in
database within a small distance are shown to have a higher
probability of collision (i.e., having the same hash code).
While LSH was successfully applied to the task of image
retrieval, the performance is degraded when short binary
codes (small number of hash functions) are used [6]. In
other words, the performance of LSH increases with more
hash functions, but it would be desirable to learn a compact
code for large scale image retrieval applications. Thus, data-
dependent hashing methods have drawn attractions recently,
where binary codes are learned from data in unsupervised
manner or from labeled examples in supervised fashion. An
exemplary unsupervised hashing method is spectral hashing
(SH) [7] where a subset of eigenvectors of the Laplacian
of the similarity graph is rounded to determine binary
codes. Semantic hashing [8] uses multi layers of restricted
Boltzman machines to learn a non-linear mapping between
input data and binary code bits. Parameter-sensitive hashing
[9], which is an extension of LSH, learns an embedding of
input data space into a new space where distances between
data points are computed using a weighted Hamming
distance and weights are learned by Boosting. In general,
supervised hashing methods are slower than unsupervised
methods and are easily over-fitted when only small number
of labeled examples are available.

Recently semi-supervised hashing (SSH) method [10] was
proposed, in which where an empirical error which measures
the violation of pairwise constraints (must-link and cannot-



link) is minimized using labeled data while variance and
independence of hash bits are maximized over labeled and
unlabeled data. Most of data-dependent hashing methods
learn a compact binary code from a set of training data but
separability between short binary codes were not considered.
In this paper we base our semi-supervised hashing on linear
discriminant analysis to learn discriminative binary codes,
where hash functions are learned such that labeled data are
used to maximize theseparability between binary codes
associated with different classes while unlabeled data are
used for regularization as well as for balancing condition
and pairwise decorrelation of bits. The resulting method is
referred to assemi-supervised discriminant hashing (SSDH).
Numerical experiments on MNIST and CIFAR datasets
demonstrate that our method generates more discriminant bi-
nary codes, improving the performance in the task of CBIR,
especially when short binary codes are used, compared to
existing hashing methods.

II. RELATED WORK

We briefly review three representative hashing methods,
including LSH [3], spectral hashing [7], and semi-supervised
hashing [10]. Suppose that we haveN data points, so the
data matrix is given byX = [x1, . . . ,xN ] where each data
point xi ∈ R

D is a D-dimensional vector. Without loss
of generality, the firstNl data points are labeled examples
assigned one ofK classes. Thus the data matrix consists
of labeled examples and unlabeled examples, i.e.,X =
[X l,Xu] whereX l ∈ R

D×Nl containsNl labeled examples
andXu ∈ R

D×Nu hasNu = N −Nl unlabeled examples.
When we need to specify class labels for data, we usex

(k)
i ,

which implies thatxi belongs to classk. The size of class
k (the number of samples in classk) is denoted byNk.
Hashing seeks binary codesyi ∈ {+1,−1}M associated
with xi for i = 1, . . . , N , such that Hamming distance
betweenyi andyj is small if xi andxj are semantically
similar.

A. Locality Sensitive Hashing

The underlying idea of LSH is to project the data into
a low-dimensional Hamming space such that each hash
function hm(xi) for m = 1, . . . ,M , satisfies thelocal
sensitivity hashing property:

P [h(xi) = h(xj)] = sim(xi,xj),

whereP [h(xi) = h(xj)] is theprobability of collision and
sim(xi,xj) represent the similarity betweenxi andxj .

LSH is a data-independent method and the hash functions
hm(·) (for m = 1, . . . ,M ) consist of random projections
followed by rounding:

hm(xi) = sgn(w⊤
mxi + bm), (1)

where sgn(z) is sign function which equal 1 forz ≥ 0
and otherwise -1,wm ∈ R

D is random weight vector, each

entry of which is drawn fromp-stable distribution (including
Gaussian distribution) [11], [12] andbm = − 1

N

∑N

i=1 w
⊤
mxi

is bias which is zero for centered data. Definingh(xi) =
[h1(xi), . . . , hM (xi)] ∈ R

M , and then for random weight
vectorwm, the probability of collision was proven to be

P [h(xi) = h(xj)] ∝

[
1−

1

π
cos−1

(
x⊤
i xj

‖xi‖‖xj‖

)]M
,

where ‖ · ‖ is Euclidean norm. In practice, LSH requires
multiple hash tables with long binary codes. The large value
of M decreases the collision probability.

B. Spectral Hashing

Spectral hashing [7] seeks similarity-preserving binary
codes{yi}

N
i=1 from a set of data points{xi}. Spectral

hashing requires the average Hamming distance between
similar neighbors to be minimized. In addition, the codes are
also required to be balanced and uncorrelated. Thus, spectral
hashing involves the following optimization:

argmin
y

N∑

i=1

N∑

j=1

sim(xi,xj)‖yi − yj‖
2,

subject to yi ∈ {+1,−1}M ,
N∑

i=1

yi = 0,

1

N

N∑

i=1

yiy
⊤
i = IM ,

where IM ∈ R
M×M is the identity matrix. The last two

constraints represent the balancing condition and pairwise
decorrelation condition.

The formulation in spectral hashing is equivalent to a
particular form of graph partitioning, which is known to
NP-hard. The problem is relaxed by discarding binary
constraintsyi ∈ {+1,−1}M . Then rounding a subset of
eigenvectors of the graph Laplacian of the similarity graph
leads to binary codes for spectral hashing. For out of sample
extension, data are assumed to be generated from separable
multi-dimensional uniform distribution and eigenfunctions
of the weighted Laplace-Beltrami operators defined on man-
ifold are used to determine binary codes of unseen data
points.

C. Semi-Supervised Hashing

Recently, semi-supervised hashing (SSH) [10] was devel-
oped, where both labeled and unlabeled data are used to
learn binary codes. Two categories of label information are
used: (1)M is a set of neighbor-pair in which(xi,xj) ∈ M
implies thatxi andxj are either neighbors in a metric space
or share common labels; (2)C is a set of nonneighbor-pair
if (xi,xj) ∈ C means that two data pointsxi andxj are far
away in metric space or have different class labels. Given



a data matrixX ∈ R
D×N , one learnsM hash functions

yielding M -bit Hamming embeddingY ∈ R
M×N . As in

LSH, themth hash function is defined as

hm(xi) = sgn(w⊤
mxi + bm),

wherebm = − 1
N

∑N

i=1 w
⊤
mxi is the mean of the projected

data, i.e., which is zero for centered data.
In contrast to LSH, weight vectorswm are determined

by maximizing the empirical accuracy on the labeled data
for a family of hash functions. The objective function to be
maximized in SSH is given by

JSSH =
M
∑

m=1







∑

(xi,xj)∈M

hm(xi)hm(xj)−
∑

(xi,xj)∈C

hm(xi)hm(xj)







.

As in spectral hashing, the balancing and pairwise decor-
relation conditions are also considered. Introducing an indi-
cator matrixΓ, the (i, j)-entry of which is given by

Γij =






1 if (xi,xj) ∈ M,

−1 if (xi,xj) ∈ C,
0 otherwise.

With this indicator matrix and the following notation,

h(xi) = [h1(xi), . . . , hM (xi)] ∈ R
M ,

H(X l) = [h(x1), . . . , h(xNl
)] ∈ R

M×Nl ,

W = [w1, . . . ,wM ] ∈ R
D×M .

the optimization problem for SSH is written as:

argmax
H

1

2
tr
{
H(X l)ΓH(X l)

⊤
}
, (2)

subject to
N∑

i=1

hm(xi) = 0, for m = 1, . . . ,M, (3)

1

N
H(X)H(X)⊤ = IM . (4)

Without loss of generality, data are centered and‖wm‖ = 1.
A few relaxations are used in SSH. The sign of projec-
tion is replaced by its signed magnitude, i.e.,H(X l) =

sgn
(
W⊤X l

)
is replaced byW⊤X l. The balancing con-

straint (3) is replaced by a soft constraint involving the
variance maximization. Thus, the leading eigenvectors of
X lΓX

⊤
l + ηXX⊤ yields the embedding solution, whereη

is a trade-off parameter. See [10] for more details.

III. SEMI-SUPERVISEDDISCRIMINANT HASHING

We present our main contribution, which is semi-
supervised discriminant hashing (SSDH). The rationale be-
hind SSDH is to maximize the separability between binary
codes learned in semi-supervised fashion. Especially, in the
case of short binary codes, it is desirable to maximize the
separability between them so that the performance in CBIR
increases. Thus we base our SSDH on linear discriminant
analysis, where hash functions are learned such that labeled
data are used to maximize the separability between binary

codes associated with different classes while unlabeled data
are used for regularization as well as for balancing condition
and pairwise decorrelation of bits.

Suppose that labeled data pointsx
(k)
i for i = 1, . . . , Nl,

belong to one ofK classes, denoted byΩk for k = 1, . . . ,K.
Denote by|Ωk| the size of classk (the number of samples in
classΩk). We assume that labeled data points are centered
and unlabeled data points are also centered, i.e.,X l1Nl

= 0
andXu1Nu

= 0, leading toX1N = 0, where1N is the
N -dimensional vector of ones andX = [X l,Xu]. Without
loss of generality, we assume that labeled data points are
sorted according to their class labels, i.e.,

X l =
[
X

(1)
l , . . . ,X

(K)
l

]
,

whereX
(k)
l ∈ R

D×|Ωk| contains all labeled examples in
classk.

In the case where data are centered, the between-class
scatter matrix is written as

SB =

K
∑

k=1

|Ωk|





1

|Ωk|

∑

j∈Ωk

h(xj)









1

|Ωk|

∑

j∈Ωk

h(xj)





⊤

,

=
K
∑

k=1

1

|Ωk|

(

[

H
(

X
(k)
l

)

1|Ωk|

] [

H
(

X
(k)
l

)

1|Ωk|

]⊤
)

,

=
K
∑

k=1

H
(

X
(k)
l

)

Π
(k)

H
(

X
(k)
l

)⊤

, (5)

whereH
(
X

(k)
l

)
= sgn

(
W⊤X

(k)
l

)
and

Π
(k) ∈ R

|Ωk|×|Ωk| =
1

|Ωk|




1 1 · · · 1
...

... · · ·
...

1 1 · · · 1


 . (6)

Thus, in compact form, the between-class scatter matrixSB

is written as

SB = H (X l)ΠH (X l)
⊤
, (7)

where

Π =




Π
(1) 0 0 · · · 0

0 Π
(2) 0 · · · 0

...
. . .

...
...

. . .
...

0 0 · · · 0 Π
(K)



. (8)

The total scatter matrix is given by

ST = H (X l)H (X l)
⊤
. (9)

Therefore, Fisher’s discriminant analysis leads to the



following optimization:

argmax
H

tr
{
H (X l)ΠH (X l)

⊤
}

tr
{
H (X l)H (X l)

⊤
} (10)

subject to
N∑

i=1

hm(xi) = 0, for m = 1, . . . ,M,

1

N
H(X)H(X)⊤ = IM ,

where balancing and decorrelation constraints are also
placed, as in spectral hashing and SSH. Then, as in SSH,
we relax the sign of projection by its signed magnitude,
leading toH(X l) ≈ W⊤X l. This relaxation leads the
balancing constraint to be satisfied if data are centered.
When the number of labeled examples is not sufficient,
Fisher’s discriminant analysis might suffer from overfitting
and numerical instability. With this relaxation, we consider
the regularized discriminant analysis [13], making use of
unlabeled examples for regularization, which leads to the
objective function

JSSDH =
tr
{
W⊤X l ΠX⊤

l W
}

tr
{
W⊤X lX

⊤
l W + βW⊤XuX

⊤
uW

} , (11)

to be maximized with respect toW . We chooseβ = 1,
leading to

JSSDH =
tr
{
W⊤X l ΠX⊤

l W
}

tr
{
W⊤XX⊤W

} . (12)

Note that data centering eliminates the balancing constraint.
Note also that due to the regularization with unlabeled
examples, we do not need to impose the decorrelation
constraint, since the maximization of (12) is equivalent to
the following optimization:

argmax
W

tr
{
W⊤X l ΠX⊤

l W
}

subject to
1

N
W⊤XX⊤W = IM .

The optimal solutionW is given by theM leading gener-
alized eigenvectors determined by the following generalized
eigenvalue problem:

[
X l ΠX⊤

l

]
W =

[
XX⊤

]
WΛ. (13)

Given a test data pointx∗, the correspondingM -bit binary
codey∗ is given by

[y∗]m =
1

2

{
1 + sgn(w⊤

mx∗)
}
,

for m = 1, . . . ,M . The algorithm for SSDH is outlined in
Algorithm 1.

Note that the rank of the between-class scatter matrix is
bounded byK − 1, i.e., rank(SB) ≤ K − 1, implying that
the code lengthM is limited by K − 1. Thus, we modify
the class indicator matrixΠ such that

[Π̃
(k)

]ij = exp

{
1

σ2

∥∥∥x(k)
i − x

(k)
j

∥∥∥
2
}
, (14)

for k = 1, . . . ,K. In other words, each entry1
|Ωk|

in Π
(k)

is replaced by the pairwise similarity between two points in
the same class. This soft class indicator matrix improves the
robustness to outliers and alleviates the rank-deficiency of
the between-class scatter matrix when we chooseM ≥ K.

Algorithm 1 Semi-Supervised Discriminant Hashing
Input: a set of labeled and unlabeled training data training

dataX = [X l,Xu], soft class indicator matrix̃Π with
the hyperparameterσ, test data pointx∗, andM (the
number of hash functions)

Output: binary codey∗ associated withx∗

1: Solve the generalized eigenvalue decomposition:[
X lΠ̃X⊤

l

]
W =

[
XX⊤

]
WΛ to determineM

leading eigenvectorsw1, . . . ,wM .
2: ReturnM -bit binary codey∗, the ith element of which

is computed by

[y∗]i =
1

2

{
1 + sgn(w⊤

i x∗)
}
, i = 1, . . . ,M.

IV. N UMERICAL EXPERIMENTS

We compare the performance of four different methods on
two benchmark datasets (MNIST and CIFAR-10), including
our semi-supervised discriminant hashing (SSDH) and three
existing methods (LSH [3], SH [7], SSH [10]). Two image
datasets were used in our experiments: (a)MNIST [14] is a
hand-written digit dataset, in which each image is associated
with a label from 0 to 9. As MNIST consists of 70K
examples, we randomly chose 60K examples as training data
and the other 10K examples as test queries (We repeat this
procedure ten times). For simplicity, we used the raw data
(28-by-28 pixels), converting into a 784-dimensional vector;
(b) CIFAR-10 [15] is the subset of 80-million tiny image
dataset. CIFAR-10 is composed of 10 different classes,
and the total number of examples in CIFAR-10 is 60K.
We randomly selected 50K for training data and the other
was reserved for test queries, repeating this procedure ten
times. To extract features for CIFAR-10, we used the three
heterogenous visual features: GIST [5], Bag-of-Words, and
HOG [16]. We concatenated the three visual features to
construct a single vector. In this experiment, we followed
the same procedure to extract GIST descriptor [6]. We
obtained Gabor-filtered images for different 8 orientations
and 4 scales. Each filtered image is averaged over 4-by-4
grid, which results in a8×4×16 = 512-dimensional vector
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Figure 1. Comparison of performance and training time of different binary codes determined by our methods (SSDH) and existing methods (SSH, SH,
LSH), on MNIST and CIFAR-10: (a) precision (%) in Hamming distance< 1; (b) precision (%) for the top 100 examples; (c) training time (seconds).

for a single image. For Bag-of-Words, we used the dense
SIFT [17] for a local descriptor and performed k-means
(k=200) on the random subset of training data to construct
the visual codewords, resulting in a 200-dimensional vector
for a single image. Finally, for HOG descriptor, we used 3-
by-3 cells and 9 bins of orientation histogram, constructing
a 81-dimensional vector for a single image. Therefore, we
used512+ 200+ 81 = 793-dimensional vector for a single
image. Without loss of generality, we assume that the data
are centered and the feature values for each dimension are
normalized into[0, 1].

Since MNIST and CIFAR-10 provide the label informa-
tion for every example, we used 20% examples for labeled
data and the rest of them for unlabeled data in cases of
SSDH and SSH. For the soft indicator matrix in SSDH, we
used the Gaussian kernelexp(− 1

σ2 ||x−y||22), whereσ is a
kernel width. To set the kernel width(σ), we used the 3-fold
cross validation on training data with the following range:
σ ∈ {0.5β, β, . . . , 3.5β, 4.0β}, where β is the average
pairwise distance for the sampled data. In this experiment,
we sampled 100 data points to computeβ. For LSH, we used
zero mean and identity covariance matrix to construct the
random weight vector. For SH, we used the online-available
code from the authors [7]

Fig. 1 shows the comparison of the three representative
hashing methods (SSH, SH, LSH) and the proposed methods
(SSDH). For quantitative evaluations, we were based on

the precision of a query: the ratio of semantically related
examples among the retrieved ones. Since our test datasets
are fully labeled, we can consider that the semantically
related examples share the same label. Specifically, we first
computed the precision of a query within Hamming distance
1 (threshold). We increased the threshold until the number of
retrieved examples is at least 100. Second, we computed the
precision for the top 100 retrieved examples of a query. To
do that, we first retrieved more than 100 candidate examples
according to Hamming distance, then re-sorted the candidate
examples according to the original descriptor.

In Fig. 1, the first row represents the results for MNIST,
and the second row does the result for CIFAR-10. All
experiments are conducted varying the number of bits. The
first column (a) is the results for the precision (%) within
Hamming distance1, the second column (b) is for the
precision (%) for the top 100 examples and the third column
(c) represents the training time (sec) for hash functions.

Fig. 1 (a) and (b) show that the precision of SSDH is
reported higher than the previous hashing methods, which
indicates that SSDH can produce the more discriminant
binary codes. Especially, in case of short binary codes,
we observe that the superiority of SSDH is exaggerated.
According to Fig. 1 (c), we can observe that SSDH requires
reasonable training time, in spite of computing the soft indi-
cator matrix and the generalized eigenvalue decomposition.

Fig. 2 represents the qualitative results with 9 bits for



CIFAR-10. We retrieved the candidate images whose Ham-
ming distance between a query is less than 1, and re-sorted
the retrieved images according to their original descriptors.
In Fig. 2, SSDH outperforms to retrieve the semantically
related images for a test query, compared to the existing
hashing methods. For examples, SSH, SH, and LSH retrieve
unrelated images (airplane or car) marked by a red triangle.

Figure 2. Qualitative Results on CIFAR-10 for four different hashing
methods (SSDH, SSH, SH and LSH) using 9 bits. The leftmost image is
the query image and twenty nearest images are displayed for each method.

V. CONCLUSIONS

We have presented a method for semi-supervised hashing
based on Fisher discriminant analysis such that labeled
data are used to maximize the separability between binary
codes in different classes while unlabeled data are used
for regularization. We demonstrated the high performance
of SSDH on two image datasets, MNIST and CIFAR-10,
in the task of image retrieval. We emphasize that SSDH
outperforms existing methods such as LSH, SH, and SSH,
especially in the case of short binary codes.
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