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Abstract—Hashing refers to methods for embedding high-
dimensional data into a similarity-preserving low-dimensonal
Hamming space such that similar objects are indexed by binar
codes whose Hamming distances are small. Learning hash func
tions from data has recently been recognized as a promising
approach to approximate nearest neighbor search for high-
dimensional data. Most of ‘learning to hash’ methods resort
to either unsupervised or supervised learning to determine
hash functions. Recently semi-supervised learning apprah
was introduced in hashing where pairwise constraints (must
link and cannot-link) using labeled data are leveraged whit
unlabeled data are used for regularization to avoid over-fiting.
In this paper we base our semi-supervised hashing on linear
discriminant analysis, where hash functions are learned sth
that labeled data are used to maximize the separability beteen
binary codes associated with different classes while unliated
data are used for regularization as well as for balancing
condition and pairwise decorrelation of bits. The resulting
method is referred to assemi-supervised discriminant hashing
(SSDH). Numerical experiments on MNIST and CIFAR-10
datasets demonstrate that our method outperforms existing
methods, especially in the case of short binary codes.

Keywords-Hashing, regularized discriminant analysis, semi-
supervised learning.
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dimensional data, its performance is not satisfactory for
high-dimensional data and does not guarantee faster search
compared to linear scan [3]. In the case of CBIR, image
descriptors (such as SIFT [4] and GIST [5]) constitute high-
dimensional vectors, so tree-based space partition agproa
is not preferred in such applications.

Hashing refers to methods for embedding high-
dimensional data into a similarity-preserving low-
dimensional Hamming space such that similar objects
are indexed by binary codes whose Hamming distances are
small. Hashing is known to be better suited to approximate
similarity search for high-dimensional data. A notable
data-independent method isocality sensitive hashing
(LSH) [3] where random projections followed by rounding
are used to generate binary codes such that two objects in
database within a small distance are shown to have a higher
probability of collision (i.e., having the same hash code).
While LSH was successfully applied to the task of image
retrieval, the performance is degraded when short binary
codes (small number of hash functions) are used [6]. In
other words, the performance of LSH increases with more
hash functions, but it would be desirable to learn a compact
code for large scale image retrieval applications. Thug-da

Similarity search, which involves finding nearest neigh-dependent hashing methods have drawn attractions recently

bors of a query, is a core problem in various areas, includingvhere binary codes are learned from data in unsupervised
machine learning, computer vision, information retrieval manner or from labeled examples in supervised fashion. An
and data mining to name a few. Especially, ever-increasingxemplary unsupervised hashing method is spectral hashing
availability of image data on the Web entails the need of(SH) [7] where a subset of eigenvectors of the Laplacian
scalable search of relevant images. For instance, contendf the similarity graph is rounded to determine binary
based image retrieval (CBIR) takes an image as a query arebdes. Semantic hashing [8] uses multi layers of restricted
returns its nearest neighbors, computing similarity betwe Boltzman machines to learn a non-linear mapping between
image descriptors (features) of the query and of an imagéput data and binary code bits. Parameter-sensitive hgshi
in database. A naive solution to nearest neighbor search [9], which is an extension of LSH, learns an embedding of
linear scan where all items in database are sorted accordirigput data space into a new space where distances between
to their similarity to the query, requiring linear complxi data points are computed using a weighted Hamming
However, this approach is not scalable in practical applicadistance and weights are learned by Boosting. In general,
tions. supervised hashing methods are slower than unsupervised
Approximate similarity search has been studied to handlenethods and are easily over-fitted when only small number
the scalability, where we trade accuracy for computationabf labeled examples are available.
speed-up. In earlier work [1], [2], spatial partitions of Recently semi-supervised hashing (SSH) method [10] was
data space was exploited via various tree structures. Whilproposed, in which where an empirical error which measures
tree-based space partition approach is successful for lovthe violation of pairwise constraints (must-link and catano



link) is minimized using labeled data while variance andentry of which is drawn fronp-stable distribution (including
independence of hash bits are maximized over labeled an@aussian distribution) [11], [12] arig,, = —% vazl w, x;
unlabeled data. Most of data-dependent hashing methods bias which is zero for centered data. Definih@e;) =
learn a compact binary code from a set of training data buth, (x;), ..., ha(x;)] € RM, and then for random weight
separability between short binary codes were not considerevectorw,,, the probability of collision was proven to be

In this paper we base our semi-supervised hashing on linear ) - M
discriminant analysis to learn discriminative binary cede p(j(g,) = h(z;)] [1 _ 2L cos! < Z; X; ﬂ 7

where hash functions are learned such that labeled data are ™ [EANEAI

used to maximize theseparability between binary codes where || - || is Euclidean norm. In practice, LSH requires

associated with different classes while unlabeled data argjtiple hash tables with long binary codes. The large value
used for regularization as well as for balancing conditionys 1/ decreases the collision probability.

and pairwise decorrelation of bits. The resulting method is

referred to asemi-supervised discriminant hashing (SSDH).  B. Spectral Hashing

Numerical experiments on MNIST and CIFAR datasets gpectral hashing [7] seeks similarity-preserving binary
demonstrate_that Ol_erethod generates more discriminant biyqes {y,}), from a set of data pointgx,}. Spectral
nary codes, improving the performance in the task of CBIRashing requires the average Hamming distance between
especially when short binary codes are used, compared Qmjar neighbors to be minimized. In addition, the codes ar

existing hashing methods. also required to be balanced and uncorrelated. Thus, spectr
Il. RELATED WORK hashing involves the following optimization:
We briefly review three representative hashing methods, N N
including LSH [3], spectral hashing [7], and semi-supezuis arg min Z Z sim(z;, z;)|ly; — yj||27
hashing [10]. Suppose that we haie data points, so the Yy i=1j=1
data matrix is given byX = [x1,...,xy] where each data subjectto  y, € {+1,-1}M]
point ; € RP is a D-dimensional vector. Without loss N
of generality, the firstV;, data points are labeled examples Zyi =0,
assigned one of{ classes. Thus the data matrix consists i=1

of labeled examples and unlabeled examples, Dé.,= 1 & -

(X, X,] whereX; € RP*N: containslV, labeled examples N Zyzyz =TIy,

and X, € RP*N« hasN, = N — N; unlabeled examples. i=1

When we need to specify class labels for data, Wemﬁé where Iy, € RM*M s the identity matrix. The last two
which implies thatr; belongs to clasg. The size of class constraints represent the balancing condition and pagrwis
k (the number of samples in clagg is denoted byNy. decorrelation condition.

Hashing seeks binary codgs € {+1,—1}* associated The formulation in spectral hashing is equivalent to a

with @; for ¢ = 1,..., N, such that Hamming distance particular form of graph partitioning, which is known to
betweeny; andy; is small if z; andz; are semantically NP-hard. The problem is relaxed by discarding binary
similar. constraintsy, € {+1,—1}*. Then rounding a subset of

A. Locality Sensitive Hashing elgenvectgrs of the graph Laplacian of the similarity graph
o _ ) ~leads to binary codes for spectral hashing. For out of sample
The underlying idea of LSH is to project the data into gytension, data are assumed to be generated from separable
a low-dimensional Hamming space such that each hashti-dimensional uniform distribution and eigenfunctio

function hy, () for m = 1,..., M, satisfies thelocal ot the weighted Laplace-Beltrami operators defined on man-
sensitivity hashing property: ifold are used to determine binary codes of unseen data
P [h(z;) = h(z;)] = sim(z;, x;), points.

where P [h(z;) = h(z;)] is the probability of collison and ~ C. Semi-Supervised Hashing

sim(z;, ;) represent the similarity betweery andz;. ~ Recently, semi-supervised hashing (SSH) [10] was devel-
LSH is a data-independent method and the hash functionsped, where both labeled and unlabeled data are used to

hm(-) (for m = 1,..., M) consist of random projections |earn binary codes. Two categories of label information are

followed by rounding: used: (1M is a set of neighbor-pair in whidtx;, ;) € M

(1) implies thatz; andx; are either neighbors in a metric space
or share common labels; (2)is a set of nonneighbor-pair

where sgfz) is sign function which equal 1 for > 0  if (x;,x;) € C means that two data poinis andx; are far

and otherwise -1w,,, € R” is random weight vector, each away in metric space or have different class labels. Given

hon (i) = Sgr(wlei +bm),



a data matrixX € RP*N one learnsM hash functions
yielding M-bit Hamming embeddingy € RM*V_ As in
LSH, themth hash function is defined as

hon(25) = Sgr(wlzmi + b)),

whereb,,, = —% Zfil w,Tnmi is the mean of the projected
data, i.e., which is zero for centered data.
In contrast to LSH, weight vectora,,, are determined

by maximizing the empirical accuracy on the labeled dat

for a family of hash functions. The objective function to be
maximized in SSH is given by

M
Tssm=» { > hm(@i)hm ()

m=1 | (T;,&L;)eM

—Z hm(ﬂfi)hm(ma‘)} .

(T;,T;)ecC

As in spectral hashing, the balancing and pairwise decor-

relation conditions are also considered. Introducing ali in
cator matrixI', the (¢, j)-entry of which is given by

codes associated with different classes while unlabeléal da
are used for regularization as well as for balancing cooliti
and pairwise decorrelation of bits.

Suppose that labeled data poimg) fori=1,..., Ny,
belong to one of{ classes, denoted I8y, fork =1,..., K.
Denote by|Q);| the size of clas& (the number of samples in
class);). We assume that labeled data points are centered
and unlabeled data points are also centered. Xel,y, =0

%nd X, 1y, = 0, leading to X1y = 0, wherely is the

N-dimensional vector of ones arl = [X;, X, |. Without
loss of generality, we assume that labeled data points are
sorted according to their class labels, i.e.,

Xl = |:Xl(1),,Xl(K):|

3

where X" e RP*I%! contains all labeled examples in
classk.

1 if (x4, ;) € M, In the case where data are centered, the between-class

Iy =< -1 if (z,2;) €C, scatter matrix is written as
0 otherwise . T
With this indicator matrix and the following notation, Sp = Z ( o > h(=y) ) <|Q | > () ) ,
k=1 €0y kljea
@) = (@), hu(e) € R, Ko J B
H(Xl) = [h(wl)v .. 7h(mN1)] € RMXNZ, = Z m ([H (X( )) I\Qk\i| [H (X( )) I\Qk\i| ) )
W = [’wl,...,’LU]u] e RPXM, k;1
.
the optimization problem for SSH is written as: = > H (sz) n®n (ng)) ; ®)
k=1
1
arg max —tr{H(X,)TH(X;)"}, 2
H 2" j where H (Xl(’“)) - sgn(WTXl(k)) and
N
subjectto Y h(@;) =0, form=1,..., M, (3) 11 ... 1
i=1 1
) . I® ¢ RICIXIQ%] — |Q | : (6)

Without loss of generality, data are centered &ng, || =

A few relaxations are used in SSH. The sign of prOJe _Thus, in compact form, the between-class scatter m&tgx

tion is replaced by its signed magnitude, i.€[(X;) = is written as
sgn(W ' X) is replaced byW ' X ;. The balancing con- Sp= H(X)TLH (X)) @
straint (3) is replaced by a soft constraint involving the ’
variance maximization. Thus, the leading eigenvectors ofvhere
XlI‘XlT +7X X " yields the embedding solution, where
is a trade-off parameter. See [10] for more details. ra® oo o - 0 1
0 a® o 0
[1l. SEMI-SUPERVISEDDISCRIMINANT HASHING

We present our main contribution, which is semi- = (8)
supervised discriminant hashing (SSDH). The rationale be- : .o
hind SSDH is to maximize the separability between binary 0 0 0 5
codes learned in semi-supervised fashion. Especialljhen t ) )
case of short binary codes, it is desirable to maximize therhe total scatter matrix is given by
separability between them so that the performance in CBIR
increases. Thus we base our SSDH on linear discriminant Sy =H (X)) H(X))" 9

analysis, where hash functions are learned such that thbele
data are used to maximize the separability between binary Therefore, Fisher's discriminant analysis leads to the



following optimization: Note that the rank of the between-class scatter matrix is
. bounded byK — 1, i.e., ranKSg) < K — 1, implying that
tr{H(Xl)HH(Xl) } the code lengthV/ is limited by K — 1. Thus, we modify

arg max (20) o ;
= tr{H (X)) H (XI)T} the class indicator matrllﬂ such that 2
~ (k

N [H( )]ij = exp {_2 ’ :BZ(-k) _ mgk)” } 7 (14)

subjectto > hp(@i) =0, form=1,..., M, o
=1 for k = 1,..., K. In other words, each entrg— in 11
1 . . . . . . - .
—H(X)HX)T = I, is replaced by the pairwise similarity between two points in

the same class. This soft class indicator matrix improves th

where ba|ancing and decorrelation constraints are a|sﬂ)bustness to outliers and alleviates the rank-defiCiemcy (0]
placed, as in spectral hashing and SSH. Then, as in SSHhe between-class scatter matrix when we chadse: K.

we relax the sign of projection by its signed magnitude, : i i _ i
leading to H(X,) ~ W X,. This relaxation leads the Algorithm 1 Semi-Supervised Discriminant Hashing
balancing constraint to be satisfied if data are centerednput: a set of labeled and unlabeled training data training
When the number of labeled examples is not sufficient, dataX = [X;, X, ], soft class indicator matriXI with
Fisher's discriminant analysis might suffer from ovenfigi the hyperparameter, test data pointe., and M (the
and numerical instability. With this relaxation, we coresid number of hash functions)

the regularized discriminant analysis [13], making use ofOutput: binary codey, associated withe.

unlabeled examples for regularization, which leads to the 1: Solve the generalized eigenvalue decomposition:

objective function [XlﬁXlT} w = {XXT} WA to determine M

- - leading eigenvectora, ..., wy.
7 tr{W X, IIX, W} (1) 2: ReturnM-bit binary codey,, theith element of which

SSDH = , .
1 T .

to be maximized with respect t8%. We chooses = 1, [y.]i = B {1+sgnw,; =)}, i=1,...,M.
leading to

T T

Jsspr = W XX, W} (12) IV. NUMERICAL EXPERIMENTS
tr {WTXXTW} We compare the performance of four different methods on

) o ) ~ two benchmark datasets (MNIST and CIFAR-10), including
Note that data centering eliminates the balancing comstrai |, semi-supervised discriminant hashing (SSDH) and three
Note also that due to the regularization with U”|abe|edexisting methods (LSH [3], SH [7], SSH [10]). Two image
examples, we do not need to impose the decorrelatioatasets were used in our experimentsMAIST [14] is a
constraint, since the maximization of (12) is equivalent topang.written digit dataset, in which each image is assediat
the following optimization: with a label from 0 to 9. As MNIST consists of 70K
T T examples, we randomly chose 60K examples as training data
arg‘}VnaX tr {W XX, W} and the other 10K examples as test queries (We repeat this
1 procedure ten times). For simplicity, we used the raw data
H T T . . . . .
subject to NW XX W =1I,. (28-by-28 pixels), converting into a 784-dimensional vegt
(b) CIFAR-10 [15] is the subset of 80-million tiny image
dataset. CIFAR-10 is composed of 10 different classes,
and the total number of examples in CIFAR-10 is 60K.
We randomly selected 50K for training data and the other
T _ T was reserved for test queries, repeating this procedure ten
{Xl 11X, } W= [XX } WA. (13) times. To extract features for CIFAR-10, we used the three

Given a test data point,, the corresponding/-bit binary heterogenous visual features: GIST [5], Bag-of-Words, and

The optimal solutionW is given by theM leading gener-
alized eigenvectors determined by the following geneealiz
eigenvalue problem:

codey, is given by HOG [16]. We concatenated the three visual features to
construct a single vector. In this experiment, we followed

[ ]m = 1 {1—|—Sgr(w71:c*)}, the same procedure to extract GIST descriptor [6]. We
2 obtained Gabor-filtered images for different 8 orientadion

form =1,..., M. The algorithm for SSDH is outlined in and 4 scales. Each filtered image is averaged over 4-by-4

Algorithm 1. grid, which results in & x 4 x 16 = 512-dimensional vector
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Figure 1. Comparison of performance and training time deedéit binary codes determined by our methods (SSDH) arstiegimethods (SSH, SH,
LSH), on MNIST and CIFAR-10: (a) precision (%) in Hammingtdisce< 1; (b) precision (%) for the top 100 examples; (c) trainingdifseconds).

for a single image. For Bag-of-Words, we used the dens¢he precision of a query: the ratio of semantically related
SIFT [17] for a local descriptor and performed k-meansexamples among the retrieved ones. Since our test datasets
(k=200) on the random subset of training data to construcare fully labeled, we can consider that the semantically
the visual codewords, resulting in a 200-dimensional vectorelated examples share the same label. Specifically, we first
for a single image. Finally, for HOG descriptor, we used 3-computed the precision of a query within Hamming distance
by-3 cells and 9 bins of orientation histogram, construgtin 1 (threshold). We increased the threshold until the number o
a 81-dimensional vector for a single image. Therefore, weetrieved examples is at least 100. Second, we computed the
used512 + 200 + 81 = 793-dimensional vector for a single precision for the top 100 retrieved examples of a query. To
image. Without loss of generality, we assume that the datdo that, we first retrieved more than 100 candidate examples
are centered and the feature values for each dimension aaecording to Hamming distance, then re-sorted the caralidat
normalized into[0, 1]. examples according to the original descriptor.

Since MNIST and CIFAR-10 provide the label informa- In Fig. 1, the first row represents the results for MNIST,
tion for every example, we used 20% examples for labelednd the second row does the result for CIFAR-10. All
data and the rest of them for unlabeled data in cases afxperiments are conducted varying the number of bits. The
SSDH and SSH. For the soft indicator matrix in SSDH, wefirst column (a) is the results for the precision (%) within
used the Gaussian kernelp(— ||z — y||3), wheres isa  Hamming distancel, the second column (b) is for the
kernel width. To set the kernel wid{lo), we used the 3-fold precision (%) for the top 100 examples and the third column
cross validation on training data with the following range: (c) represents the training time (sec) for hash functions.

o € {058,8,...,3.58,4.08}, where g8 is the average Fig. 1 (a) and (b) show that the precision of SSDH is

pairwise distance for the sampled data. In this experimenteported higher than the previous hashing methods, which
we sampled 100 data points to compgdtd-or LSH, we used indicates that SSDH can produce the more discriminant
zero mean and identity covariance matrix to construct théinary codes. Especially, in case of short binary codes,
random weight vector. For SH, we used the online-availableve observe that the superiority of SSDH is exaggerated.
code from the authors [7] According to Fig. 1 (c), we can observe that SSDH requires

Fig. 1 shows the comparison of the three representativeeasonable training time, in spite of computing the soft-ind
hashing methods (SSH, SH, LSH) and the proposed methodsitor matrix and the generalized eigenvalue decomposition
(SSDH). For quantitative evaluations, we were based on Fig. 2 represents the qualitative results with 9 bits for



CIFAR-10. We retrieved the candidate images whose Ham-[3] A. Gionis, P. Indyk, and R. Motawani, “Similarity search
ming distance between a query is less than 1, and re-sorted

the retrieved images according to their original descripto
In Fig. 2, SSDH outperforms to retrieve the semantically

related images for a test query, compared to the existing[4]
hashing methods. For examples, SSH, SH, and LSH retrieve
unrelated images (airplane or car) marked by a red triangle.

Figure 2. Qualitative Results on CIFAR-10 for four diffetemashing
methods (SSDH, SSH, SH and LSH) using 9 bits. The leftmosgaria
the query image and twenty nearest images are displayecébr method.

V. CONCLUSIONS

[5]

(6]

[7]

(8]

[9]

(10]

We have presented a method for semi-supervised hashiig!]
based on Fisher discriminant analysis such that labeled
data are used to maximize the separability between binary
codes in different classes while unlabeled data are used
for regularization. We demonstrated the high performancél?]

of SSDH on two image datasets, MNIST and CIFAR-10,

in the task of image retrieval. We emphasize that SSDH
outperforms existing methods such as LSH, SH, and SSH13]

especially in the case of short binary codes.
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