
Deep Learning to Hash with Multiple Representations

Yoonseop Kang1, Saehoon Kim1, Seungjin Choi1,2,3
1 Department of Computer Science and Engineering,

2 Division of IT Convergence Engineering,
3 Department of Creative IT Excellence Engineering,

Pohang University of Science and Technology, Pohang 790-784, Korea
Email: {e0en,kshkawa,seungjin}@postech.ac.kr

Abstract—Hashing seeks an embedding of high-dimensional
objects into a similarity-preserving low-dimensional Hamming
space such that similar objects are indexed by binary codes
with small Hamming distances. A variety of hashing methods
have been developed, but most of them resort to a single view
(representation) of data. However, objects are often described
by multiple representations. For instance, images are described
by a few different visual descriptors (such as SIFT, GIST, and
HOG), so it is desirable to incorporate multiple representations
into hashing, leading to multi-view hashing. In this paper we
present a deep network for multi-view hashing, referred to as
deep multi-view hashing, where each layer of hidden nodes is
composed ofview-specificand sharedhidden nodes, in order to
learn individual and shared hidden spaces from multiple views
of data. Numerical experiments on image datasets demonstrate
the useful behavior of our deep multi-view hashing (DMVH),
compared to recently-proposed multi-modal deep network as
well as existing shallow models of hashing.

Keywords-deep learning; harmonium; hashing; multi-view
learning; restricted Boltzmann machines;

I. I NTRODUCTION

Similarity search is a core problem in various areas such
as machine learning, information retrieval, and data mining
to name a few. For example, content-based image retrieval
(CBIR) takes an image as a query and returns its nearest
neighbors, computing similarity between visual descriptors
(features) of the query and of images in database. A naive
solution to nearest neighbor search is linear scan, but this
approach is not scalable in practical applications. Approx-
imate nearest neighbor search such as tree-based methods,
is successful for low-dimensional data, but its performance
is not satisfactory for high-dimensional data and does not
guarantee faster search compared to linear scan [1]. Most
of visual descriptors, such as SIFT [2], GIST [3], and HOG
[4], constitute high-dimensional vectors, so tree-based space
partition approach is not preferred in CBIR applications.

Hashing refers to methods for embedding high-
dimensional data into a low-dimensional Hamming space
such that similar objects are indexed by binary codes with
small Hamming distances. Hashing can be categorized into
data-independent and data-dependent methods. A notable
data-independent method is locality sensitive hashing (LSH)
[1], [5] where random projections followed by rounding are

used to generate binary codes. The performance of LSH is
not satisfactory when short binary codes are used [6]. Data-
dependent hashing methods learn binary codes from a set
of data to compactly index them. Learning hash functions
can be done in unsupervised [7], supervised [8], or semi-
supervised [9], [10] manner. Notable data-dependent hashing
methods include: (1) spectral hashing [7] where a subset
of eigenvectors of the Laplacian of the similarity graph is
rounded to determine binary codes; (2) semantic hashing [8]
where multi-layer networks are used to learn a non-linear
mapping between input data and binary code bits.

Most of existing data-dependent hashing methods exploit
only single representation of objects to learn hash functions,
referred to assingle-view hashing. In practice, however,
images are often represented by different visual descriptors
such as GIST [3], HOG [4], SIFT [2], and so on. These
visual descriptors have their own characteristics and could
be complementary to each other’s strength and weakness.
Thus, it is desirable to incorporate these heterogenous visual
descriptors into learning hash functions, leading tomulti-
view hashing. Recently spectral hashing was extended to
multi-view hashing where a linear sum of view-specific
similarity matrices [11] was exploited. This is limited to a
shallow model and considers linear hash functions followed
by quantization to determine binary codes.

In this paper we present a deep network with a set of view-
specific hidden nodes and a set of shared hidden nodes, that
yields binary codes at its top layer nodes. There has been
recent work on deep networks to handle multi-modal data
[12] or designed for multi-view learning [13]. However, to
our best knowledge, deep learning has not been exploited for
multi-view hashing yet. This paper presents the first work
on multi-view hashing using deep networks.

II. RELATED WORK

We briefly review spectral hashing [7] and its multi-
view extension [11] Suppose that we are given a set of
N instances withK different views,{x(1)

i , . . . ,x
(K)
i }Ni=1,

where x
(k)
i ∈ R

Dk correspond to visual descriptors.
Then, the view-specific data matrix is defined asX(k) =

[x
(k)
1 , . . . ,x

(k)
N] ∈ R

Dk×N . We denote by y
(k)
i ∈

{−1,+1}M a binary code of lengthM associated with

x
(k)
i . Then the binary code matrix is given byY (k) =

[y
(k)
i , . . . ,y

(k)
N] ∈ R

M×N . For single view hashing, the
binary code matrix is represented byY (without the su-
perscript) and for multi-view hashing an integrated binary
code matrix is denoted byY ∗ = {y∗

i }
N
i=1 ∈ R

M×N

which is expected to capture the average similarities between
instances across views.

Spectral hashing [7] determines similarity-preserving
compact binary codes by enforcing the average Hamming
distance between similar neighbors to be minimized, and
also requiring the codes of lengthM to be uncorrelated
and balanced. Thus, spectral hashing involves the following
optimization:

argmin
Y

N∑

i=1

N∑

j=1

Si,j‖yi − yj‖
2
2,

subject to Y ∈ {−1,+1}M×N ,

Y 1N = 0,
1

N
Y Y ⊤ = IM , (1)

whereSi,j is the similarity between instancesxi and xj ,
‖yi‖2 is the Euclidean norm of binary code vectoryi,
IM ∈ R

M×M denotes the identity matrix, and1N ∈ R
N is

the vector of all ones. The problem is relaxed by discarding
binary constraintsyi ∈ {+1,−1}M , so that rounding a sub-
set of eigenvectors of the graph Laplacian of the similarity
graph leads to binary codes for spectral hashing.

CHMIS-AW [11] takes a linear sum of view-specific
similarities S∗

i,j =
∑

k Si,j , which is plugged into the
spectral hashing framework (1). For out-of-sample exten-
sion in CHMIS-AW, binary codes of unseen examples
are determined by a convex combination of linear hash
functions, i.e.,

∑K
k=1 βkW

(k)⊤x
(k)
i with

∑K
k=1 βk = 1.

Embedding matricesW (k) and mixing coefficientsβk are
estimated by solving a regularized regression problem.Y ∗

and{W (k), βk}
K
k=1 are determined in an alternative fashion.

III. D EEPMULTI -V IEW HASHING

In this section we present the main contribution,deep
multi-view hashing(DMVH), as shown in Fig. 1, which
has a few unique features that highlight advantages: (1)
Existing methods for multi-view hashing are limited to
shallow models, while DMVH is expected to benefit from
deep architecture; (2) Semantic hashing [8] builds a deep
belief network for hashing, but it is limited to single view,
while DMVH is able to manage multiple views; (3) DMVH
consists of shared hidden nodes as well as view-specific
hidden nodes to capture both shared and view-specific
characteristics, while most of existing multi-view learning
methods, including canonical correlation analysis [14] and
dual wing harmonium (DWH) [15], assume that all views are
completely correlated, which are captured by shared hidden
nodes. Similar idea was used in shallow models [16], [17]

and deep networks [13], but to our best knowledge it was
not exploited for hashing yet.

...

... ...

......

...

...

(a)

(b)

(c)

Figure 1. Graphical model for 4-layer DMVH.

A. Model

The 4-layer DMVH model is shown in Fig. 1, where: (a)
The bottom layer represents the visible nodesx(1) andx(2)

with two different views, both of which are connected to
theshared hidden nodesh

1
and each of which is connected

correspondingview-specific hidden nodesh(1),1 andh(2),1

in the first hidden layer; (b) In the second hidden layer, the
shared hidden nodesh

2
also further capture the common

characteristics across hidden nodes in the first layer and the
view-specific hidden nodesh(1),2 andh(2),2 are connected
to corresponding hidden nodes in the first hidden layer; (c)
The hidden nodesy∗ in the top layer, which are connected
to all the hidden nodes in the second hidden layer, represent
the integrated binary code associated withx(1) andx(2).

In order to handle both continuous and discrete variables,
we choose the independent marginal distributions for visible
nodesx(k), view-specific hidden nodesh(k), and shared
hidden nodesh, from the exponential family, as in [18]:

p(x(k)) =
∏

i

exp
{∑

i,a

ξ
(k)
i,a f

(k)
i,a (x

(k)
i)−A

(k)
i ({ξ

(k)
i,a })

}
,

p(h(k)) =
∏

j

exp
{∑

j,b

λ
(k)
j,b g

(k)
j,b (h

(k)
j)−B

(k)
j ({λ

(k)
j,b })

}
,

p(h) =
∏

j

exp
{∑

j,b

λj,bgj,b(hj)−Bj({λj,b})
}
,

where{ξ(k)i,a }, {λ(k)j,b }, {λj,b} are natural parameters,{f (k)
i,a },

{g
(k)
j,b }, {gj,b} are sufficient statistics, and{A(k)

i }, {B(k)
j },

{Bj} are log-partition functions. We illustrate random fields
to describe each inter-layer model, denoted by (a), (b), (c)
in Fig. 1, which are used to compute log-likelihoods.

1) Model (a): We assume Bernoulli distributions over
hidden nodes:

p(h(k),1) =
∏

j

Bern(h(k),1j |σ(λ
(k),1
j))

=
∏

j

exp
{
λ
(k),1
j h

(k),1
j − log

(
1 + exp

{
λ
(k),1
j

})}
,

p(h
1
) =

∏

j

Bern(h
1

j |σ(λ
1

j))

=
∏

j

exp
{
λ
1

jh
1

j − log
(
1 + exp

{
λ
1

j

})}
,

whereσ(·) is the logistic function and the natural parameters
λ
(k),1
j = {λ

(k),1
j,b } and λ

1

j = {λ
1

j,b} become log-odds.

Sufficient statistics are given byh(k),1j =
{
g
(k),1
j,b (h

(k),1
j)

}

and h
1

j =
{
g1j,b(h

1

j)
}

. For visible nodes, we use Gaussian
distributions with unit variance for real-valued descriptors
and Bernoulli distributions for binary-valued descriptors:

p(x(k)) =

{ ∏
i Bern(x(k)i |σ(ξ

(k)
i)), for binary,∏

i N (x
(k)
i | ξ

(k)
i , 1), for real-valued.

Gaussian distributionN (x
(k)
i | ξ

(k)
i , 1) is specified by two

pairs of natural parameters and sufficient statistics, and a
log-partition function:

{ξ
(k)
i,a } = [ξ

(k)
i ,−1/2]⊤, {f

(k)
i,a } = [x

(k)
i , (x

(k)
i)2]⊤,

A
(k)
i ({ξ

(k)
i,a }) = −((ξ

(k)
i)2 + log 2π)/2.

With these marginal distributions, we couple visible and
hidden variables in the log-domain by introducing quadratic
interaction terms, leading to the following random filed:

p({x(k)}, {h(k),1},h
1
)

∝ exp
{∑

k,i,a

ξ
(k)
i,a f

(k)
i,a (x

(k)
i) +

∑

j

λ
1
jh

1
j +

∑

k,j

λ
(k),1
j h

(k),1
j

+
∑

k,i,a,j

W
(k),1
i,a,j f

(k)
i,a (x

(k)
i)h

(k),1
j +

∑

k,i,a,j

U
(k),1
i,a,j f

(k)
i,a (x

(k)
i)h

1
j

}
.

Since the model is a bipartite graph, between-layer con-
ditional distributions are represented as products of dis-
tributions of individual nodes, leading to the conditional
distributions given by

p(x
(k)
i |{h(k),1},h

1
) ∝ exp

{∑

a

ξ̃
(k)
i,a f

(k)
i,a (xi)− A

(k)
i ({ξ̃

(k)
i,a })

}
,

p(h
(k),1
j |{x(k)},h

1
) ∝ exp

{
λ̃
(k),1
j h

(k),1
j −B

(k),1
j ({λ̃

(k),1
j })

}
,

p(h
1
j |{x

(k)}, {h(k),1}) ∝ exp
{
λ̃
1
jh

(k),1
j −B

1
j ({λ̃

1
j})

}
. (2)

where ξ̃
(k)
i,a = ξ

(k)
i,a +

∑
j W

(k),1
i,a,j h

(k)
j +

∑
j U

(k),1
i,a,j h

1

j ,

λ̃
(k),1
j = λ

(k),1
j +

∑
i,aW

(k),1
i,a,j f

(k)
i,a (x

(k)
i), and λ̃

1

j = λ
1

j +∑
i,a,k U

(k),1
i,a,j f

(k)
i,a (x

(k)
i) are shifted parameters.

2) Model (b): DMVH improves the limited representa-
tion power of ’Model (a)’ by stacking an additional hidden
layer on it. The second hidden layer is also composed of
shared hidden nodesh

2
and view-specific hidden nodes

h(k),2, which are connected to hidden nodes in the first
hidden layer, in order to form higher-level representation
(see (Fig. 1-(b)).

Assuming Bernoulli distributions for all visible and hid-
den nodes, the joint distribution is given by

p({h(k),1},h
1
, {h(k),2},h

2
)

∝ exp
{∑

k,i

λ
(k),1
i h

(k),1
i +

∑

i

λ
1
ih

1
i +

∑

k,j

λ
(k),2
j h

(k),2
j

+
∑

j

λ
2
jh

2
j +

∑

k,i,j

W
(k),2
i,j h

(k),1
i h

(k),2
j +

∑

k,i,j

U
(k),2
i,j h

(k),1
i h

2
j

+
∑

i,j

U
2
i,jh

1
ih

2
j

}
.

We can repeatedly stack this structure in the middle of
DMVH to build a desired number of layers. For example,
stacking twice gives us 5-layer DMVH and omitting this
structure results in 3-layer DMVH.

3) Model (c): The top two layers in DMVH combine
high-level representations{h(1),2, . . . ,h(K),2,h

2
} into a set

of integrated hash codesy∗ (Fig. 1-(c)). Since hash codes are
binary, the output nodey∗j (which is also hidden) is assumed
to follow Bernoulli distribution with meanσ(ψj):

p(y∗) =
∏

j

Bern(y∗j |σ(ψj)).

Then, the joint distribution over({h(k),2},h
2
,y∗) is given

by

p({h(k),2},h
2
,y∗)

∝ exp
{∑

k,i

λ
(k),2
i h

(k),2
i +

∑

i

λ
2

ih
2

i +
∑

j

ψjy
∗
j

+
∑

k,i,j

V
(k)
i,j h

(k),2
i y∗j +

∑

i,j

V i,jh
2

i y
∗
j

}
.

All these three models together constitute the 4-layer
DMVH model. Our DMVH model is different from existing
multi-view deep networks [12], [13] in many aspects. While
existing models learn high-level features separately for each
view and fuse them in the top layer, DMVH learns view-
specific and shared representations across views in every
layers to capture the partial correlations in multi-view data.

B. Training

Training procedure of DMVH is similar to those of other
deep networks. We first pre-train each layer in a greedy,
layer-by-layer approach. We start by training parameters for
the bottom two layers, then fix the learned parameters. Then
we repeat the process for the higher two layers, until we
reach the top layer. We train each two layers of DMVH by
maximizing their expected log-likelihoodL derived from the

joint distribution. For example, the expected log-likelihood
of the bottom two layers of DMVH is as below:

L = 〈log p({x(k)})〉+

=

〈
log

∑
{h

(k),1
},h

1 p({x(k)}|{h(k),1},h
1
)

〉

+

,

where〈·〉+ is expectation over data distribution. Derivation
of likelihood of other layers is done in a similar way.

As exact calculation of the gradients ofL requires
summation or integration over the model distribution
p({x(k)}, {h(k),1},h

1
), we need to do some approximation.

Contrastive divergence [19] learning approximates model
distribution by initializing visible nodes with data distri-
bution, and then alternatively sampling from conditional
distributions of visible and hidden nodes derived in (2). The
gradient ofL over the parameters of bottom two layers of
DMVH is as follows:

∂L/∂W
(k),1
i,a,j = 〈f

(k)
i,a B

(k),1′

j (λ̃
(k),1
j)〉+ − 〈f

(k)
i,a B

(k),1′

j (λ̃
(k),1
j)〉−,

∂L/∂U
(k),1
i,a,j = 〈f

(k)
i,a B

1
j

′
(λ̃

1
j)〉+ − 〈f

(k)
i,a B

1
j

′
(λ̃

1
j)〉−,

∂L/∂ξ
(k)
i,a = 〈f

(k)
i,a 〉+ − 〈f

(k)
i,a 〉−,

∂L/∂λ
(k),1
j = 〈B

(k),1′

j (λ̃
(k),1
j)〉+ − 〈B

(k),1′

j (λ̃
(k),1
j)〉−,

∂L/∂λ
1
j = 〈B

1
j

′
(λ̃

1
j)〉+ − 〈B

1
j

′
(λ̃

1
j)〉−,

where 〈·〉− is expectation over (approximated) model
distribution, f (k)

i,a stands for f (k)
i,a (x

(k)
i), and B

(k),1′

j =

∂B
(k),1
j /∂λ

(k),1
j andB

1

j

′

= ∂B
1

j/∂λ
1

j are derivatives of log-
partition functions over parameters.

We also add additional penalty terms to the log-likelihood
separate shared and view-specific features and enforce sparse
hidden node activation. First, an orthogonalization term
ensures that shared and view-specific hidden nodes do not
contain similar features. We use a pairwise sum of cosine
distances between columns of view-specific featuresW (k),1

and shared featuresU (k),1:

L
(k)
orth =

∑

i,j

w
(k),1⊤
i u

(k),1
j

‖w
(k),1
i ‖‖u

(k),1
j ‖

.

In addition, we enforce sparse activation of hidden nodes by
setting their activation rateρ to a low value for numerical
stability. For the output nodes, we set the activation rate to
0.5 make sure each hash bit bisects the whole dataset:

L
(k)
sparsity =

∑
j(ρ− E[h

(k),1
j |{x(l)}])2,

Lsparsity =
∑

j(ρ− E[h
1

j |{x
(k)}])2,

By summing the expected likelihood, weight orthogonaliza-
tion terms and sparsity penalty, we get the final objective
function for pre-training.

LDMV H = L −
∑

k

(αL
(k)
orth + βL

(k)
sparsity)− βLsparsity .

Training other layers is done in a similar way. After pre-
training each layers of DMVH, we fine-tune DMVH using

objective function of nonlinear neighborhood component
analysis (NCA) [20] with backpropagation algorithm:

LNCA =
∑

i,j∈Ci

pi,j =
∑

i,j∈Ci

exp(−d(y∗
i ,y

∗
j))∑

k 6=i exp(−d(y
∗
i ,y

∗
k))

.

Nonlinear NCA maximizes the probabilitypi,j that hash
codes y∗

i and y∗
j with the same classCi are close to

each other. This objective function is suitable for supervised
hashing as it maps hash codes of instances with same labels
to have small Hamming distances.

IV. EXPERIMENTS

In this section, we performed image retrieval with hash
codes learned by various hashing methods to investigate
the usefulness of DMVH. Caltech-256 and NUS-WIDE-
Lite dataset were used for our experiments. Caltech-256
[21] has 30,607 images with 256 classes. We extracted
HoG [4] and GIST [3] descriptors from the dataset. 1000
samples were used as test querys, and the remaining were
used for training. When building deep models for hashing
this dataset, Gaussian distribution was assumed for both
HOG and GIST descriptors. NUS-WIDE-Lite [22] contains
27,807+27,808 (training+test) images with tag annotations
and 6 image descriptors. We used 5 of 6 image descriptors
(excluding bag of visual words) and tag annotations. The
dataset also consists of 81 different ’concepts’, and these
are used as labels for NCA fine-tuning. Gaussian distribu-
tion was assumed for 5 image descriptors, and Bernoulli
distribution was chosen for tag annotations.

We compared existing deep networks including model
for multi-modal deep learning (MMDL) and DWH with
DMVH. We trained every model with layer-wise greedy
pre-training followed by fine-tuning with NCA objective
function (3). We pre-defined the number of nodes in DMVHs
used in experiments. In 4-layer DMVHs, the second layer
had 512+64 (shared+view-specific) hidden nodes. The third
layer had 256+32 nodes. Then the top layer had node
with the same number of hash code length. In 3-layer
DMVHs, the middle layer had 512+64 nodes. For a fair
comparison, we made sure that MMDL had similar number
of parameters by assigning more hidden nodes for MMDL
than DMVH. All deep models were trained with the same
training parameters1.

We also compared DMVH with CHMIS-AW, a shallow,
multi-view hashing method based on spectral decomposition.
We trained all hashing methods for hash code lengths
{8, 16, 32, 64, 128}.

After training the models, we retrieved images from the
training set whose hash code was within a hamming distance

1Models were trained for 50 epochs with batch size 100. Learning rate
were set to 0.1, with momentum of 0.9. The parameters for orthogonaliza-
tion penaltyα and sparsity termβ were set toα = 0.0001 andβ = 0.1.
For numerical stability, we set learning rate to 0.001 for pre-training bottom
layers of deep networks.

20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of hash bits

A
ve

ra
ge

 p
re

ci
si

on

DMVH 4layer
DMVH 3layer
MMDL 4layer
MMDL 3layer
DWH
CHMIS−AW

(a) Average precision on Caltech-256 dataset

20 40 60 80 100 120

0.3

0.32

0.34

0.36

0.38

0.4

Number of hash bits

A
ve

ra
ge

 p
re

ci
si

on

DMVH 4layer
DMVH 3layer
MMDL 4layer
MMDL 3layer
DWH
CHMIS−AW

(b) Average precision on NUS-WIDE-Lite dataset

20 40 60 80 100 120
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of hash bits

A
re

a
un

de
r

pr
ec

is
io

n−
re

ca
ll

cu
rv

e

DMVH 4layer
DMVH 3layer
MMDL 4layer
MMDL 3layer
DWH
CHMIS−AW

(c) AU-PRC on Caltech-256 dataset

20 40 60 80 100 120
0.26

0.27

0.28

0.29

0.3

0.31

0.32

Number of hash bits

A
re

a
un

de
r

pr
ec

is
io

n−
re

ca
ll

cu
rv

e

DMVH 4layer
DMVH 3layer
MMDL 4layer
MMDL 3layer
DWH
CHMIS−AW

(d) AU-PRC on NUS-WIDE-Lite dataset

Figure 2. Average precision (hamming radius=2) and area under precision-recall curve (AU-PRC) measured for hashing algorithms including DMVH,
MMDL, DWH, and CHMIS-AW on Caltech-256 and NUS-WIDE-Lite datasets.

2 from the hash code of the query from test set. We increased
the hamming distance boundary until we get more than 100
retrieved samples. After that, we calculated the precision
by using labels as ground truth. The area under precision-
recall curve was also computed for each hash code length.
To increase the recall level, we increased hamming distance
boundary used for retrieval.

On Caltech-256 dataset, DMVH models achieved the
highest precision on every size of hash codes, followed
by single-view deep network which uses more connec-
tion weights than it. DMVH scored the largest area un-
der precision-recall curve also. DMVH also outperformed
spectral hashing-based shallow multi-view hashing models,
while still outperforming multimodal deep learning model.
In both datasets, 4-layer DMVH gave better result than 3-
layer model, empirically showing that the model is benefited
from the advantage of using deep architecture for multi-view
hashing. In contrast, adding more layer gave worse result on
MMDL model (Fig. 2, 3).

V. CONCLUSIONS

In this paper, we have proposed a deep network model for
learning hash functions from partially correlated multi-view
data. Each layer of the proposed model separates correlated
and uncorrelated information, and propagates the higher-
level shared representation generated by aggregating its
inputs as well as the view-specific, uncorrelated information
to upper layers. Then the model combines its outputs to

Query Retrieved images

Figure 3. Qualitative comparison of 4-layer DMVH and 2-layer DWH on
Caltech-256 dataset. For 5 query images (leftmost column),we retrieved
10 images using DMVH (upper rows) and DWH (lower rows). Retrieved
images with the same label as the quary images were marked with red
border.

generate a set of hash functions that effectively represents
the partial correlation of multi-view inputs. By analyzing
connection weights and hash codes learned from real-world
image datasets, we have demonstrated that our model is
capable of separating correlated and uncorrelated informa-
tion on real-world datasets, and generates more semantically

meaningful hash codes than shallow ones. Moreover, our
model has shown beneficial over the existing deep models
and multi-view hashing algorithms based on spectral hashing
on image retrieval experiments on image datasets with
multiple descriptors.

Acknowledgments: This work was supported by NIPA-
MSRA Creative IT/SW Research Project, NIPA ITRC Sup-
port Program (NIPA-2012-H0301-12-3002), the Converging
Research Center Program funded by the Ministry of Educa-
tion, Science, and Technology (2012K001343), MKE-NIPA
”IT Consilience Creative Program” (C1515-1121-0003), and
NRF World Class University Program (R31-10100).

REFERENCES

[1] A. Gionis, P. Indyk, and R. Motawani, “Similarity search
in high dimensions via hashing,” inProceedings of the
International Conference on Very Large Data Bases (VLDB),
1999.

[2] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,”International Journal of Computer Vision, vol. 60,
no. 2, pp. 91–110, 2004.

[3] A. Oliva and A. Torralba, “Modeling the shape of the scene: A
holistic representation of the spatial envelope,”International
Journal of Computer Vision, vol. 42, no. 3, pp. 145–175,
2001.

[4] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” inProceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition
(CVPR), San Diego, CA, 2005.

[5] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality
sensitive hashing scheme based onp-stable distributions,” in
Proceedings of the Annual ACM Symposium on Computa-
tional Geometry (SoCG), 2004.

[6] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large
image databases for recognition,” inProceedings of the IEEE
International Conference on Computer Vision and Pattern
Recognition (CVPR), Anchorage, Alaska, 2008.

[7] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in
Advances in Neural Information Processing Systems (NIPS),
vol. 20. MIT Press, 2008.

[8] R. Salakhutdinov and G. Hinton, “Semantic hashing,” in
Proceeding of the SIGIR Workshop on Information Retrieval
and Applications of Graphical Models, 2007.

[9] J. Wang, S. Kumar, and S. F. Chang, “Semi-supervised hash-
ing for scalable image retrieval,” inProceedings of the IEEE
International Conference on Computer Vision and Pattern
Recognition (CVPR), San Francisco, CA, 2010.

[10] S. Kim and S. Choi, “Semi-supervised discriminant hashing,”
in Proceedings of the IEEE International Conference on Data
Mining (ICDM), Vancouver, Canada, 2011.

[11] D. Zhang, F. Wang, and L. Si, “Composite hashing with
multiple information sources,” inProceedings of the ACM
SIGIR Conference on Research and Development in Informa-
tion Retrieval (SIGIR), Beijing, China, 2011.

[12] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y.
Ng, “Multimodal deep learning,” inProceedings of the Inter-
national Conference on Machine Learning (ICML), Bellevue,
WA, 2011.

[13] Y. Kang and S. Choi, “Restricted deep belief networks for
multi-view learning,” in Proceedings of the European Con-
ference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD), Athens,
Greece, 2011.

[14] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical
correlation analysis: An overview with applications to learn-
ing methods,”Neural Computation, vol. 16, pp. 2639–2664,
2004.

[15] E. P. Xing, R. Yan, and A. G. Hauptmann, “Mining associated
text and images with dual-wing harmonium,” inProceedings
of the Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI), Edinburgh, UK, 2005.

[16] H. Lee and S. Choi, “Group nonnegative matrix factorization
for EEG classification,” inProceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS),
Clearwater Beach, Florida, 2009.

[17] M. Salzmann, C. H. Ek, R. Urtasun, and T. Darrell, “Factor-
ized orthogonal latent spaces,” inProceedings of the Inter-
national Conference on Artificial Intelligence and Statistics
(AISTATS), Sardinia, Italy, 2010.

[18] M. Welling, M. Rosen-Zvi, and G. Hinton, “Exponential
family harmoniums with an application to information re-
trieval,” in Advances in Neural Information Processing Sys-
tems (NIPS), vol. 17. MIT Press, 2005.

[19] G. E. Hinton, “Training products of experts by minimizing
contrastive divergence,”Neural Computation, vol. 14, no. 8,
pp. 1771–1800, 2002.

[20] R. Salakhutdinov and G. Hinton, “Learning a nonlinear
embedding by preserving class neighbourhood structure,” in
Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS), San Juan, Puerto Rico,
2007.

[21] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object
category dataset,” Caltech, Tech. Rep., 2007.

[22] T. S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng,
“NUS-WIDE: a real-world web image database from national
university of singapore,” inProceedings of the ACM Inter-
national Conference on Image and Video Retrieval (CIVR),
Santorini, Greece, 2009.

