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Abstract

Speaker independent feature extraction is a critical
problem in speech recognition. Oriented principal com-
ponent analysis (OPCA) is a potential solution that can
find a subspace robust against noise of the data set. The
objective of this paper is to find a speaker-independent
subspace by generalizing OPCA in two steps: First,
we find a nonlinear subspace with the help of a ker-
nel trick, which we refer to as kernel OPCA. Second,
we generalize OPCA to problems with more than two
phonemes, which leads to oriented discriminant analy-
sis (ODA). In addition, we equip ODA with the kernel
trick again, which we refer to as kernel ODA. The mod-
els are tested on the CMU ARCTIC speech database.
Our results indicate that our proposed kernel methods
can outperform linear OPCA and linear ODA at finding
a speaker-independent phoneme space.

1 Introduction

Speech utterances contain information about the lin-
guistic content of the message as well as the identity of
the speaker. For the purposes of speech recognition, it
is the linguistic content that is important; identity infor-
mation can be regarded as noise. Therefore, in an opti-
mal feature space, information about linguistic content
should be maximized while speaker dependent content
minimized.

Oriented principal component analysis (OPCA) [2]
was proposed by Malayath et al. [5] as a poten-
tial method to find such speaker-independent phoneme
space. OPCA is an extension of principal component
analysis (PCA). Like PCA, OPCA maximizes variance
in directions defined as informative, but in addition also

minimizes variance in directions considered to be noisy.
In the original formulation of Malayath et al. [5], OPCA
was used to separate two phonemes and two speakers.
Recently, various nonlinear mapping methods such as
Isomap have been developed [8, 9]. However, these
manifold learning methods assume that data points lie
on one connected manifold, which is not the case when
the data set consists of several disconnected classes or
clusters.

In this paper, we extend OPCA to the non-linear case
by means of the kernel trick used in kernel PCA and
kernel fisher discriminant (KFD) [7, 6]. Our method, re-
ferred to as kernel OPCA, employs a geodesic-distance-
based kernel similar to our previous work [1], but the
technique can be easily extended to other kernel func-
tions (e.g. polynomial, exponential, hyperbolic tangent
functions), as long as they satisfy the Mercer kernel
condition, i.e., positive semi-definiteness of the kernel
matrix. The rationale behind a geodesic-distance ker-
nel is two-fold. First, the geodesic distance has been
demonstrated to find nonlinear structures of data sets
[9, 1]. Second, the parameter tuning is not sensitive
to the performance as long as the neighborhood size is
within a proper range.

As a second step, we propose a generalization of this
algorithm, kernel OPCA, to multi-class discrimination
problems, and demonstrate its effectiveness on multi-
ple phonemes. For this purpose, we adapted the clas-
sical linear discriminant analysis (LDA) solution to the
oriented discriminant analysis (ODA) formulation, and
applied the kernel trick to obtain a kernel ODA method.
Experimental results with the CMU ARCTIC speech
database [4] show that our methods find more infor-
mative low-dimensional space from a nonlinearly struc-
tured data set.
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2 Kernel ODA

Kernel ODA can be considered as a generalized ver-
sion of kernel OPCA for multi-class problems. Here, to
avoid clutter, we show the derivation of kernel OPCA in
detail. Since the derivation of kernel ODA is very sim-
ilar to that of kernel OPCA, we give just the objective
function of kernel ODA.

Following Malayath et al. [5], we assume a prob-
lem with two speakers and two phonemes. We define a
difference vector dl to capture differences between two
phonemes for the same speaker, and a difference vector
ds to capture differences between two speakers for the
same phoneme. From these difference vectors, we can
then estimate a covariance matrix1 for each of the two
sources of information in the data (i.e., speaker-specific
and linguistic) as:

Rl = E
[
(dl − dl)(dl − dl)T

]
,

Rs = E
[
(ds − ds)(ds − ds)T

]
,

(1)

where dl and ds are the mean difference between
phonemes and speakers, respectively, and E [·] is the
expectation operator. Then, the objective function
JOPCA(w) to be maximized can be written as follows:

JOPCA(w) =
Signal
Noise

=
wT Rlw

wT Rsw
, (2)

where w are the basis vectors of the projected space.
Note that, by maximizing JOPCA, we also maximize
the signal-to-noise ratio, i.e., the variance due to pho-
netic content relative to the variance due to speaker
information. This equation is similar to the objective
function in LDA [6], except that Rl and Rs are covari-
ance matrices of ‘phoneme difference’ and ‘speaker dif-
ference’, instead of ‘between-class scatter’ and ‘within-
class scatter’.

In order to ”kernelize” OPCA, the objective function
in Eq. (2) is implemented as an inner product matrix.
Let X = [x1, x2, · · · ,x4N ] and xi ∈ Rd×1, where

xi =





Speaker A, Phoneme X if 1 ≤ i ≤ N
Speaker B, Phoneme X if N + 1 ≤ i ≤ 2N
Speaker A, Phoneme Y if 2N + 1 ≤ i ≤ 3N
Speaker B, Phoneme Y if 3N + 1 ≤ i ≤ 4N

.

As in KFD [6], we transform wT Rlw and wT Rsw
into αT Mα and αT Nα, respectively using the kernel
trick as follows.

αT Mα = wT RΦ
l w, (3)

1Since Eq. (1) is the covariance of the differences, we can define
the correlation. Consequently, M and N change slightly with respect
to Eqs. (8) and (9), respectively. In our experiments, the use of this
correlation showed a slightly better performance than the covariance-
based algorithm.

αT Nα = wT RΦ
s w, (4)

where RΦ
l and RΦ

s correspond to Rl and Rs in non-
linear feature space obtained by applying the nonlinear
mapping Φ to the original data points X . Once these
M and N matrices are defined, the remaining part of
the method is the same as in KFD [6]. We describe
the details of the case Rl below (Rs follows a similar
derivation).

First, we express the objective function in terms of
the input data X instead of the difference vectors dl and
ds using dl = [x2N+1 − x1, · · · ,x4N − x2N ], which
represents the difference between phonemes. Then

Rl =
1

2N

2N∑

i

(x2N+i − xi − x2N+i − xi)

·(x2N+i − xi − x2N+i − xi)T , (5)

and

w =
4N∑

i

αixi. (6)

Let Hik = xT
i (dk

l − dk
l ). Now, with

Ki,j = xi
T xj , Hik = Ki,2N+k − Ki,k −

1
2N

∑2N
m (Ki,2N+m −Ki,m). Finally, wT Rlw is

given by

wT Rlw =
1

2N
αT HHT α. (7)

Therefore, we obtain M by

M =
1

2N
HHT . (8)

Likewise, in case of the denominator wT Rsw in Eq.
(2), with ds = [xN+1 − x1, · · · , x2N − xN , x3N+1 −
x2N+1, · · · , x4N − x3N ], we can derive N as

N =
1

2N
GGT + µI, (9)

where G = [G1G2], and G1,ik = Ki,N+k −Ki,k −
1

2N

∑N
m=1 (Ki,N+m + Ki,3N+m −Ki,m −Ki,2N+m),

and G2,ik = Ki,3N+k − Ki,2N+k −
1

2N

∑N
m=1 (Ki,N+m + Ki,3N+m −Ki,m −Ki,2N+m).

Note that, for regularization purposes, we add a multi-
ple of the identity matrix, µI to N in Eq. (9), where
µ is a small number to make N positive definite [6].
In our experience, this regularization term makes the
algorithm more stable.

Given a novel test data xt, the projected point yt can
be calculated as

yt = wT xt =
4N∑

i

αiKT,it. (10)



Several Mercer kernel functions (i.e. polynomial, ex-
ponential, or hyperbolic tangent function) can be used
for the kernel matrices K and KT . Here, we use a ker-
nel matrix based on the geodesic distance. As discussed
in previous work [1], this approach has the advantage
that it can find a nonlinear structure of data set without
critical parameters affecting the performance.

In kernel OPCA, we assumed a problem with two
phonemes and two speakers. We extend the solution to
problems with more than two phonemes. This extension
leads to a new method, which we term kernel ODA. We
first define ODA in terms of the covariance matrix, then
derive the kernel ODA solution. With only two speak-
ers, the correlation matrix Rs remains the same as be-
fore. Only the correlation matrix Rl must be adjusted
to handle more than two phonemes. Our solution is to
use the ‘between-class scatter matrix’ RL in the LDA
solution. With this minor adjustment, the final objective
function of ODA becomes

JODA(w) =
wT RLw

wT Rsw
, (11)

where Rs is given in Eq. (1) and RL is given by

RL =
C∑

i

ni(µi − µ)(µi − µ)T , (12)

where C is the number of classes (phonemes), ni is the
number of phonemes in the ith class, µi is the average
of the ith class, and µ is the average of all data. To ker-
nelize it as in Eqs. (3) and (4), M is obtained from the
KFD solution [6] instead of Eq. (8), and N is obtained
from the kernel OPCA solution in Eq. (9). Projections
of novel test data are obtained with Eq. (10). To calcu-
late M and N , we again use the kernel matrices K̃ and
K̃T from kernel Isomap [1].

3 Experiments

We validated the proposed methods through a se-
ries of experiments using the CMU ARCTIC speech
database [4]. As performance measures, we applied
quadratic classifiers to the projection of the test data
and measured the Bhattacharyya distance of the class-
conditional distributions [3].

3.1 Two speakers and Two phonemes

The CMU ARCTIC database is a phonetically bal-
anced corpus from US speakers, which was designed
for unit selection speech synthesis research. The
database includes US English male (‘bdl’, ‘rms’) and

female (‘slt’, ‘clb’) speakers. For a representative ex-
ample, we extracted two phonemes (‘AH’ and ‘IH’)
for each speaker, and used Mel frequency cepstral co-
efficients (MFCCs) as the feature vectors. We used
two speakers (‘bdl’, ‘slt’) for training and two speak-
ers (‘rms’, ‘clb’) for testing. We used 300 samples per
phoneme of each speaker for training, and 400 sam-
ples for testing, for a total of 1,200 training samples
and 1,600 test samples. Note that since the phonemes
were extracted from real sentences, two samples from
the same speaker and the same phoneme class ‘AH’ may
have significantly different MFCCs as a result of coar-
ticulatory effects.

Figure 1. Subspaces for two speakers and two
phonemes with (a) linear OPCA and (b) kernel OPCA.
Blue crosses correspond to the phoneme ‘AH,’ whereas
red circles correspond to the phoneme ‘IH’. Yellow cir-
cles denote the training data.

Fig. 1 shows the subspaces for linear OPCA and ker-
nel OPCA. Even though both scatterplots show speaker-
independent subspaces, the kernel OPCA solution ap-
pears to provide increased separability. Indeed, we
measured the Bhattacharyya distance [3] between the
two clusters of phonemes and compared the classifica-
tion rate based on quadratic classifier. The results, sum-
marized in Table 1, indicate that kernel OPCA provides
better phoneme discrimination than linear OPCA using
either measure. Paired T-test indicates that the differ-
ence in classification performance between both meth-
ods is statistically significant (p=0.0406; n=24).

3.2 Two speakers and Multiple phonemes

The CMU ARCTIC database is also used for these
experiments. In this case, we extracted three phonemes
(‘AH’, ‘IH’ and ‘OW’) for each speaker and used
MFCCs as the encoding vector. As in the previous ex-
periment, we used two speakers (‘bdl’, ‘slt’) for training
and two speakers (‘rms’, ‘clb’) for testing, resulting in
300 samples per phoneme of each speaker for training,
and 300 samples for testing, for a total of 1,800 training
samples and 1,800 test samples.



Table 1. Measurement of the performance for two
speakers and two phonemes (MFCCs) on OPCA and
KOPCA.

Methods B-dist B-dist Hit Rate
Train Test on test data

OPCA + Cov 14.71 14.70 85.88%
OPCA + Cor 14.52 14.53 87.58%

KOPCA + Cov 24.11 23.80 88.13%
KOPCA + Cor 24.33 23.91 89.54%

Fig. 2 shows the resulting subspaces for linear ODA
and kernel ODA. Kernel ODA provides more scattered
clusters than linear ODA (both within and between
classes), in agreement with kernel OPCA in the previ-
ous experiments. Classification rates using a quadratic
classifier were 72.93% (linear ODA) and 78.17% (ker-
nel ODA). When KFD is optimized with some kernel
functions (here RBF was the best) and parameters, it
has 74.86% hit rate with the same classifier as before,
which means just phoneme information is not enough
to find a speaker-independent space.

Figure 2. Subspaces for two speakers and three
phonemes with (Left) linear ODA and (Right) kernel
ODA. The blue crosses are ‘AH’, the red circles are
‘IH’, and the green triangles are ‘OW’.

4 Conclusion

In this article, we proposed a two-pronged gener-
alization of oriented PCA. First, we found a nonlin-
ear subspace by means of the kernel trick, which led
to kernel OPCA. Second, we extended kernel OPCA
to problems with more than two classes, which led to
linear ODA and kernel ODA. Experimental results on
the CMU ARCTIC corpus showed that our proposed
methods, kernel OPCA and kernel ODA, provide better
separability than their linear counterparts (OPCA and

linear ODA) in finding a speaker-independent phoneme
space, as measured by classification rates and the Bhat-
tacharyya distance.

These algorithms can be viewed as nonlinear
manifold-learning strategies for problems where data
points exist on several clustered manifolds correspond-
ing to their classes. These algorithms were tested with
relatively small data sets in the speech domain. Addi-
tional work is required to determine the extent to which
these results will hold when applied to a larger data set
of speakers and the entire phonetic space.
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