Semi-Supervised Learning on Bi-Relational Graph for Image Annotation

Hien Duy Pham¹, Kye-Hyeon Kim², and Seungjin Choi¹,²

¹ Division of IT Convergence Engineering
² Department of Computer Science and Engineering
Pohang University of Science and Technology
77 Cheongam-ro, Nam-gu, Pohang 790-784, Korea
Email: {hienpham1311,fenrir,seungjin}@postech.ac.kr

Abstract—We present a semi-supervised learning algorithm based on local and global consistency, working on a bi-relational graph of images and labels. By incorporating two types of different entities (images and labels) in a single graph, label propagation can exploit label correlations for measuring the relevance between unannotated images and labels, leading to a significant improvement in performance. In our propagation process, images belonging to the same label (or labels belonging to the same image) are not treated equally: our method allows that those images (or labels) have different weights in the label propagation process according to their semantic reliability to the label (or to the image), so that can achieve further improvement in the image annotation performance, compared to the existing work using a bi-relational graph. We apply our method to two benchmark multi-label image datasets, and obtain some encouraging experimental results.

I. INTRODUCTION

Advances in digital imagery has led to a sharp increase in the prevalence of digital images. As a result, there is an increasing requirement on designing image retrieval systems in order to create, manage and query image databases effectively. One important task in image retrieval is image annotation, a process of assigning relevant keywords or captions to images. Since manual annotation by human is a costly and tedious procedure, automatic image annotation has attracted more and more attention recently.

However, automatic image annotation is a difficult topic in computer vision because of the semantic gap between low-level image features and high-level semantic words. Extensive work has been performed to bridge the semantic gap problem (see [1] and references therein), following three different approaches: generative models, discriminative models and graph-based models.

Generative models compute a joint distribution over image features and labels, which leads to a conditional probability over labels given image features by using Bayes’ rule. Topic models are well-known generative models, assuming that each image can exhibit multiple components or topics. Some examples of topic models are PLSA-based methods [2] and LDA-based methods [3]–[6]. A major drawback of generative models is a huge computational cost for parameter estimation in the learning process.

Discriminative models consider each annotation keyword as a class, and cast an image annotation task to a multi-class classification problem [7], [8]. By directly modeling the conditional distribution of image features given annotation words, these models cannot exploit label correlations that are important for improving the overall classification performance.

Graph-based models formulate an image annotation task as semi-supervised learning [9], which can take advantage of a large number of unlabeled images. Label propagation is usually applied for transferring label information from annotated images to unannotated images over a graph. Traditional graph models connect both annotated and unannotated images according to the actual semantic closeness of each image-label pair.

Fig. 1. A bi-relational graph (BG) of images and labels. Two subgraphs are modeled for representing correlations among images (W_{xx}) and labels (W_{ll}). The connections between annotated images and their labels (W_{xl} and W_{lx}) transfer the information between two groups, where the weights are set to a constant value in existing work. Our method allows different weights from/to images and labels, according to the actual semantic closeness of each image-label pair.

Recently, Wang et al. [16] proposed a bi-relational graph (BG, Fig. 1) of images and annotation words, and then developed the random walk with restart (RWR) label propagation process, which can directly measure the semantic closeness...
between an annotation word and an image. While the work achieved a significant improvement in the classification performance, one limitation is that the weights between images and labels \((W_{xl})\) and the images \({\mathcal{C}}\) in Fig. 1) are simply fixed to a constant value. That is, images belonging to the same label (or labels belonging to the same image) contribute equally to the semantic closeness, while they actually have different contributions. Fig. 2 shows an example: Every image belongs to the class "car", but intuitively, Fig. 2(a)-(c) should have more contribution than "book" for labeling the image.

In this paper, we propose a new BG model for allowing different contributions from/to images and labels, and then develop the label propagation algorithm on the proposed BG model. Below we summarize our contributions:

- Our BG model maintains different weights from/to images and labels, according to the actual semantic closeness of each image-label pair. The similarity between a label and an image is asymmetric, from which we can consider the relative reliability of nodes in the label propagation process.

- We extend the local and global consistency method [17] to a multi-entity data graph, by formulating a joint regularization framework and then deriving the corresponding RWR algorithm.

- Compared to the previous method of Wang et al. [16], our model does not need to learn the label-to-label relationship iteratively. Also, experimental results show that our method outperforms the previous method on two multi-label image databases.

II. Problem Formulation

Suppose that we have \(N\) images \(X = \{x_1, x_2, \ldots, x_N\}\) and \(L\) labels \(L = \{l_1, l_2, \ldots, l_L\}\). We define \(C_k\) as a set of images belonging to the label \(l_k\), i.e., \(i \in C_k\) if \(x_i\) belongs to \(l_k\). Assuming that the first \(N_L\) images in \(X\) are (partially) annotated, our goal is to predict labels for the remaining \(N - N_L\) unannotated images.

A. Bi-relational Graph Model

A BG consists of two subgraphs of image nodes and label nodes and the intermediate connections between those subgraphs:

- \(G_X\) captures the pairwise similarity between images.
- \(G_Y\) captures the correlation between labels.
- \(G_B\) is the bipartite graph between \(X\) and \(L\), representing the label assignment of the first \(N_L\) annotated images in \(X\).

Then the affinity of the whole BG is decomposed into 4 submatrices:

\[
W_G = \begin{bmatrix} W_{xx} & W_{xl} \\ W_{lx} & W_{ll} \end{bmatrix},
\]

where \(W_{xx}\) and \(W_{ll}\) are the similarity matrix of images in \(X\) and correlation matrix of labels in \(L\) respectively. \(W_{xl}\) and \(W_{lx}\) are defined on \(G_B\), representing the relation between the first \(N_L\) annotated images and their labels.

The similarity between images is defined as the cosine similarity:

\[
W_{xx}(i, j) = \frac{x_i^\top x_j}{\|x_i\| \|x_j\|},
\]

where \(W_{xx}(i, j)\) denotes the \((i, j)\)-th entry in \(W_{xx}\). The label correlation matrix \(W_{ll}\) is calculated as

\[
W_{ll}(h, k) = \frac{y_h^\top y_k}{\|y_h\|},
\]

where \(y_h \in \{0, 1\}^N\) is a binary vector such that \(y_h(i) = 1\) for all \(i \in C_h\). Note that in the work of Wang et al. [16], \(W_{ll}\) is initialized as a symmetric matrix and then becomes asymmetric by learning, whereas in our model, \(W_{ll}\) is asymmetric from the beginning, and needs not to be updated.

Now we present how to construct \(W_{lx}\) and \(W_{xl}\). In [16], \(W_{xl}(i, k) = W_{lx}(k, i) = \beta\) for all \(i \in C_h\), given a constant \(0 \leq \beta \leq 1\) (Fig. 4(a)). In other words, the similarity between a label and an image is always equal and symmetric. However, images belonging to the same label (or labels belonging to the same image) may have different contribution to the semantic closeness, as we have shown in Fig. 2 and 3.

Fig. 4(b) shows our proposed model for \(W_{lx}\) and \(W_{xl}\): for each label \(l_k\) and the images \(\{x_i \mid i \in C_k\}\), our model does not need to learn the label-to-label re-
and \(W_{xx}(k, i) = 0 \) for all \(i \notin C_k \). The normalization factor \(\sum_{i' \in C_k} \sum_{j \in C_h} W_{xx}(i', j) \) enforces \(\sum_i W_{xx}(i, k) = 1 \) for all \(k \). Eq. (4) implies that the label \(l_k \) has more effect on the image \(x_i \) if more neighboring images of \(x_i \) in \(G_X \) also belong to the label \(l_k \). For example, in Fig. 3, the human face is dominant in the image. Thus, the image would be connected to other human face images in \(G_X \) with large similarities \(W_{xx}(i, j) \). Since those human face images would also tend to have the “face” label, Eq. (4) can enforce a large weight from the label “face” to the image in Fig. 3. On the other hand, the human body is not dominant in the image. Thus, there are only a few (or no) human body images among the neighbors of the image, leading to a small weight from the label “body” to the image.

Similarly, we define the image-to-label similarity \(W_{il} \) as the following: for each annotated image \(x_i \) \((i = 1, \ldots, N_L) \) and its labels \(\{l_k \mid i \in C_k \} \),

\[
W_{il}(i, k) = \frac{\sum_{h \mid i \in C_h} W_{lh}(k, h)}{\sum_{k' \mid i \in C_k} \sum_{h \mid i \in C_h} W_{lh}(k', h)},
\]

and \(W_{il}(i, k) = 0 \) if \(i \notin C_k \) or if \(x_i \) is unannotated. The normalization factor \(\sum_{k' \mid i \in C_k} \sum_{h \mid i \in C_h} W_{lh}(k', h) \) enforces \(\sum_k W_{il}(i, k) = 1 \) for all annotated images \(i = 1, \ldots, N_L \).

\section*{B. Semi-supervised Learning on Bi-relational Graph}

Now we present a novel label propagation method for image annotation with our BG model. Based on the local and global consistency (LGC) algorithm [17], which is a representative label propagation method for single-label semi-supervised classification (i.e., classes are assumed to be mutually exclusive), we extend the method to multi-label classification problems for image annotation (i.e., classes are often correlated). Fig. 5 clearly shows why our extension is necessary for image annotation.

We develop the joint regularization framework for the image subgraph \(G_X \), the label subgraph \(G_L \), and the bipartite graph \(G_B \). First, we consider the image subgraph \(G_X \). The cost function associated with \(X \) is defined as

\[
Q(F_X) = \sum_{i,j \in X} W_{xx}(i,j) \left\| \frac{f_X(i)}{\sqrt{D_{xx}(i,i)}} - \frac{f_X(j)}{\sqrt{D_{xx}(j,j)}} \right\|^2 + \mu \sum_{i \in X} \left\| f_X(i) - f_X^{(0)}(i) \right\|^2, \tag{6}
\]

where

- \(f_X(i) \in \mathbb{R}^{1 \times L} \) is the \(i \)-th row of \(F_X \in \mathbb{R}^{N \times L} \), denoting the relevance scores of the image \(x_i \) for each label;
- \(f_X^{(0)}(i) = [W_{il}(1, i), \ldots, W_{il}(L, i)] \) denotes prior relevance scores, which can be seen as the conditional probability of the image \(x_i \) given each label \(l_k \) without considering image-to-image and label-to-label correlations;
- \(\mu > 0 \) is the regularization parameter;
- \(D_{xx} \) is the diagonal matrix, whose \((i, i)\)-th element is the sum of the \(i \)-th row of \(W_{xx} \), i.e., \(D_{xx}(i,i) = \sum_j W_{xx}(i,j) \).

In Eq. (6), the first term of the right-hand side is the smoothness constraint, which means that the relevance score should not differ too much between nearby points (“local consistency”). The second term enforces the score should not differ too much from the initial score (“global consistency”).

Similarly, we define the cost function associated with the label subgraph \(G_L \) as

\[
Q(F_L) = \sum_{i,j \in L} W_{ll}(i,j) \left\| \frac{f_L(i)}{\sqrt{D_{ll}(i,i)}} - \frac{f_L(j)}{\sqrt{D_{ll}(j,j)}} \right\|^2 + \mu \sum_{i \in L} \left\| f_L(i) - f_L^{(0)}(i) \right\|^2, \tag{7}
\]

where \(f_L(i) \in \mathbb{R}^{1 \times L} \) (the \(i \)-th row of \(F_L \in \mathbb{R}^{L \times L} \)) denotes the relevance between the label \(l_k \) and the other labels, and \(f_L^{(0)}(i) \in \{0,1\}^{1 \times L} \) denotes the prior relevance whose \(i \)-th element is 1 and the other elements are 0.
Finally, we define two cost functions associated with the bipartite subgraph G_B as

$$Q(F_{XL}) = \sum_{j \in L} \sum_{i \in C_j} W_{xl}(i,j) \|f_X(i) - f_L(j)\|^2,$$

(8)

$$Q(F_{LX}) = \sum_{j \in L} \sum_{i \in C_j} W_{lx}(i,j) \|f_X(i) - f_L(j)\|^2,$$

(9)

where we omit D_{zl} and D_{lz} since in Eq. (4) and (5) the sum of any nonzero row of W_{zl} and W_{lz} are always 1, i.e., $D_{zl}(i,j) = D_{lz}(j,i) = 1$ for all i,j. These two cost functions play a role of the smoothness constraints between two subgraphs G_X and G_L to avoid large differences in the relevance scores between G_X and G_L.

From Eq. (6)-(9), we derive the cost function over the whole BG:

$$Q(F) = \alpha Q(F_X) + \beta Q(F_{XL}) + \gamma Q(F_{LX}) + \delta Q(F_L),$$

(10)

where $F = [F_X; F_L] \in \mathbb{R}^{(N+L) \times L}$. Denoting $W = \begin{bmatrix} \alpha W_{xx} & \beta W_{xz} \\ \gamma W_{lx} & \delta W_{ll} \end{bmatrix}$ and $D = \begin{bmatrix} \alpha D_{xx} & \beta D_{zl} \\ \gamma D_{lz} & \delta D_{ll} \end{bmatrix}$, Eq. (10) can be rewritten as

$$Q(F) = \sum_{i,j=1}^{N+L} W(i,j) \left| \frac{f(i)}{\sqrt{D(i,i)}} - \frac{f(j)}{\sqrt{D(j,j)}} \right|^2 + \mu \sum_{i=1}^{N+L} \left| f(i) - f^{(0)}(i) \right|^2,$$

(11)

where $F = [f_X(1); \ldots; f_X(N); f_L(1); \ldots; f_L(L)]$ is the relevance score between $N + L$ nodes with L labels. Setting the derivative of $Q(F)$ to be zero, we have

$$\frac{\partial Q}{\partial F}|_{F=F^*} = F^* - TF^* + \mu(F^* - F^{(0)}) = 0,$$

(12)

where

$$T = \frac{1}{2}(S + S^T)$$

(13)

and

$$S = \begin{bmatrix} \alpha D_{xx}^{1/2} W_{xx} D_{xx}^{1/2} & \beta D_{xz}^{1/2} W_{xz} D_{xl}^{1/2} \\ \gamma D_{lz}^{1/2} W_{lx} D_{lz}^{1/2} & \delta D_{ll}^{1/2} W_{ll} D_{ll}^{1/2} \end{bmatrix}. $$

(14)

For the initial relevance $F^{(0)} \in \mathbb{R}^{(N+L) \times L}$, we concatenate $F_X^{(0)}$ and $F_L^{(0)}$ with different weights as

$$F^{(0)} = \begin{bmatrix} \lambda F_X^{(0)} \\ (1 - \lambda) F_L^{(0)} \end{bmatrix}$$

(15)

for a constant $0 \leq \lambda \leq 1$, which allows the relative importance of nodes belonging to each label l_k differently during the label propagation process, such that (1) $\lambda W_{xl}(k,i)$ for the i-th image node, and (2) $1 - \lambda$ for the label node l_k. The sum of the importances (i.e., the sum of the k-th column of $F(0)$) is always 1.

Solving Eq. (12), we have the following closed-form solution:

$$F^* = \frac{\mu}{1 + \mu} \left(I - \frac{1}{1 + \mu} T \right)^{-1} F^{(0)},$$

(16)

where I denotes the $(N + L) \times (N + L)$ identity matrix. The i-th row vector $f^*(i)$ measures the relevance between the i-th image x_i and each label optimally. Using the adaptive decision boundary method [15], one can refine the labels of N_L annotated images as well as assign labels for the remaining $N - N_L$ unannotated images.

III. EXPERIMENTS

We evaluate our proposed method, named local and global consistency on bi-relational graph (LGC-BG), on two well-known benchmark datasets for image annotation, namely Microsoft Research Cambridge image dataset (MSRC) and LabelMe image dataset [18].

We compare our methods to the iterative BG (I-BG) method [16] that performs label propagation on a BG in which the weights between annotated images and their labels are equal to a constant β.

For our approaches, we report the results of two variants of our method:

1) LGC-BG1 does not consider the relative importance of image nodes during label propagation ($\lambda = 0$ in Eq. (15));

2) LGC-BG2 considers the relative importance of each node.

A. Data Description and Setup

MSRC dataset contains 591 images annotated by 23 labels. Each image has around 3 labels on average. As suggested by the official description of the dataset, we eliminated the “horse” label because only a few images belong to this label.

LabelMe dataset contains 2,687 images annotated by 200 labels. In our experiments, we used 8 categories from the dataset: “coast”, “forest”, “highway”, “inside city”, “mountain”, “open country”, “street” and “tall building”.

For both datasets, we extracted global image descriptor features (GIST) [18] from each image. Then each image is represented by a 512-dimensional feature vector.

The parameter μ controls the trade-off between the local and the global consistency, which is usually set to a small value. For all of our experiments, we set $\mu = 0.01$. For LGC-BG2, we set $\lambda = 0.5$. For the other parameters $\alpha, \beta, \gamma, \delta$, we found the optimal values within $[0, 1]$ for each experiment.

B. Results

We evaluate our proposed methods and compare their annotation performance to the I-BG methods. For comparing the performance of image annotation, micro-averaged and macro-averaged versions of precision and F1 measures (Micro P, Macro P, Micro F1, Macro F1, respectively) were measured.
Table I. Image Annotation Performance (with 1 Standard Deviation) on MSRC and LabelMe Datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Metric</th>
<th>I-BG</th>
<th>LGC-BG1</th>
<th>LGC-BG2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSRC</td>
<td>Macro F</td>
<td>0.371±0.03</td>
<td>0.594±0.07</td>
<td>0.609±0.06</td>
</tr>
<tr>
<td></td>
<td>Micro F</td>
<td>0.371±0.02</td>
<td>0.585±0.05</td>
<td>0.613±0.05</td>
</tr>
<tr>
<td></td>
<td>Micro P</td>
<td>0.302±0.04</td>
<td>0.564±0.07</td>
<td>0.628±0.07</td>
</tr>
<tr>
<td></td>
<td>Macro P</td>
<td>0.406±0.03</td>
<td>0.597±0.06</td>
<td>0.626±0.05</td>
</tr>
<tr>
<td>LabelMe</td>
<td>Micro F</td>
<td>0.210±0.05</td>
<td>0.503±0.09</td>
<td>0.506±0.08</td>
</tr>
<tr>
<td></td>
<td>Micro P</td>
<td>0.311±0.04</td>
<td>0.532±0.07</td>
<td>0.537±0.05</td>
</tr>
</tbody>
</table>

Fig. 6. Some examples of image annotation results on MSRC dataset. Boldface words are missing labels in the ground-truth annotation set but found by our method.

Table I summarizes the results. LGC-BG methods consistently outperforms the I-BG approaches, clearly showing the effectiveness of our joint regularization framework. Moreover, I-BG iteratively updates the label correlation matrix for improving the overall performance, whereas our model simply uses the initial label correlation matrix and does not need to update it. The superiority of LGC-BG2 over LGC-BG1 shows the advantage of considering the relative reliability of image nodes in the propagation process. Fig. 6 and 7 show some examples of image annotation results obtained by our LGC-BG2 method.

Fig. 7. Some examples of image annotation results on LabelMe dataset. Boldface words are missing labels in the ground-truth set but found by our method. Bold-italic words in brackets are given in the ground-truth set but cannot be found by our method, since those labels correspond to minor components in the images.

IV. CONCLUSIONS

Bi-relational graph is a novel graph-based semi-supervised learning model to solve the image annotation problem (in particular) as well as multi-label classification problems (in general). By incorporating two types of different entities (data and labels) in a single graph, label propagation can exploit label correlations for multi-label classification. In this paper, we analyzed a major limitation of the existing BG-based method, and then overcome such a limitation using a novel BG model. We also developed a more general version of the local and global consistency method by investigating the joint regularization framework on our BG model. Experimental results clearly showed the significant improvement of our method compared to the previous approach. In future work, we will study the strategy for learning parameters in the joint regularization framework to achieve the best overall classification performance. We will also study how to fuse multiple BGs that are constructed from multiple types of features (e.g., SIFT, GIST, and color histogram) extracted from image data.

ACKNOWLEDGMENTS

This work was supported by National Research Foundation (NRF) of Korea (NRF-2013R1A2A2A01067464) and KEIT Machine Learning Research Center.

REFERENCES

