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Abstract— Gaussian process (GP) model is a flexible nonpara- confirming the useful behavior of our GP method for VAD
metric Bayesian method that is widely used in regression and and speech enhancement.
classification. In this paper we present a probabilistic method
where we solve voice activity detection (VAD) and speech Il. GAUSSIAN PROCESSMODEL FORSPEECH

enhancement in a single framework of GP regression, modeling Wi that th . h si i f
clean speech by a GP smoother. Optimized hyperparameters in € assume that he noisy speech signals a sum o

GP models lead us to a novel VAD method since learned length- cléan speech; and the white Gaussian noisg (with mean
scale parameters in covariance functions are much different 0 and variancer2):

between voiced and unvoiced frames. Clean speech is estimated

by posterior means in GP models. Numerical experiments Ty = St + N, (1)

confirm the validity of our method. 9 .
wheren; ~ N (0,02). In each frame of lengthV, z; is

|. INTRODUCTION assumed to be a stationary process. We model the clean

speech by a latent function involving pastsamples and

PEECH enhancement is a fundamental processing, thﬁurep samples ofr,, leading to
oal of which is to estimate clean speech, given

noise-contaminated signals. Signals measured througtomic zy = f(@\e) +ne, (2)
phones in real-world environments, are always noisy data,
hence, the enhancement of speech or the elimination o
noise, plays a critical role for successful subsequentapeex,; = [T¢yp, Toip—1,. .. Teg1, Te—1,Tt—2, . - - ,xt,p]T
processing. Various methods have been developed for speech I . .

enhancement, including Wiener filter method [7], spectrz%\ﬁqee model (2) is independently applied to each frame, i.e.,

subtraction method [1], HMM-based method [13], signa nonlinear fP”C“O”ﬂ'> are djfferent across frames. With
subspace method [3], Kalman filter method [9].. filter- abuse of notations, we ugg-) without specifying the frame

: ) index.
based method [15], particle filter method [10], [16]. SpeecH] GP model represents the latent functipf) by a random

enhancement methods often require voice activity detectio ocess with Gaussian brior. i.6
(VAD) so that speech enhancement is applied to only voicdl prior. 1.€.,
frames in order to save the computational load. In general, f(;,;\t) ~ gp(()’k(m\hwv)), (3)

VAD and speech enhancement have been separately studied

and two different methods are jointly applied in a cascad&(" ) iS & covariance function. We use the squared exponen-
manner. tial covariance function (Gaussian kernel),

Gagssian process (GP) model has been Widely_used in (21, 2\,) = exp { |z, _m\7||2/l}, (4)
machine learning because of its flexible nonparametricraatu
and computational simplicity [11], [14], [17]. In this pape Where|| - || denotes Euclidean norm ard> 0 is a length-
we present a GP model to solve VAD and speech enhancale parameter (kernel width paramete]rg.
ment in a single framework. To this end, in each frame of Given a collection of inpuX = {x\, f;H (§=N(m—
length N (N = 160 in our experiments, corresponding to1) for the mth frame) and hyperparamete?s> [I, o2] T, the
20 ms duration in the case of 8 kHz sampling frequencyhrior of latent functions is given by

we model the clean speech by a latent function that takes

ere

pastp and futurep samples as inputs. Such a latent function p(f] X, 0) =N(0,K), (5)
is represented by random process with Gaussian prior. Thgkere

is, we formulate speech enhancement as a GP regression T
problem. In the hyperparameter learning in GP models, f = [f(m\(@rl))v ...,f(m\(ngN))] )
Gaussian kernel widths (length-scale parameters in sduare  [K], , = exp {—[l&\(c4u) — T\ (e40)[I*/1} -

exponential covariance function) are much different betwe
voiced and unvoiced frames. This enables us to detect voiE)g
activity frames. The clean speech is estimated by posterior Y = [Tes1, Tera,- .- 7x£+N]T

means in GP models. Numerical experiments are provided, o ) . .
Then, the likelihood ofy given the latent functions is
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fine response variables by



where I is the N x N identity matrix. The required tas
for speech enhancement are two folds: (1) the estim
of optimal hyperparameter@ (leading to VAD); (2) th ,
calculation of the posterior mean ¢f (leading to clea w w w w w w w w w w
speech estimation). e

I1l. THE PROPOSEDMETHOD
A. Woice Activity Detection by Length-Scale Parameter ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Our GP model-based VAD method (GP-VAD) consit o
optimized length-scale parameters (kernel width) to d - [
voiced frames. The GP-VAD method can be viewed a sg wlilltn | Uil I I
case of automatic relevance determination (ARD) that : F— [t w
matically selects the relevant dimensions of input vass o
[8]. In ARD, the relevance of each dimension is determ i
by the inverse of length-scale parametétgly,...,1/ls,}. : I.' " I I - I . Ii]“ I
When theith length-scale is very large, the covariance fi )
tion is almost independent of thth input and its contributic o
to inference is automatically removed. We directly applg
simple idea to the task of VAD, observing that learned length _ _ _
scale parameters are very large for unvoiced frames (see Fif o, o, 20100 2 foseconiamiated sneed satatout

l)- GP-VAD method; voiced/unvoiced frames detected by the eptbased
In an unvoiced frame, GP smoother produg¢és, ;) ~ 0 method (En-VAD).

for i = 1,...,N, leading tok(x\;,x\,) ~ 1. Thus the

length-scale parameter becomes considerably large in such

a case. Unvoiced frames are easily detected by monitoritighered; is the ith element ind and M = K + o 1. For
learned length-scale parameters, i.e., when the learngthle VAD, we needdM /0 logl that is given by

scale parameter is larger than the thresligld it is decided OM
as an unvoiced frame. Fig. 1 shows an illustrative example. —
In the 3rd plot in Fig. 1, length-scale parameters across Ologl
frames are plotted, where parameters are considerably larghere G is a squared Euclidean distance matrix whose
for unvoiced frames. On the other hand, in the entropy-based, v)-element is given by

method (En-VAD) [12], entropies are used (see the 4th plot

in Fig. 1), where a careful selection of threshold is reqiire (Glu,w = &\ (640) — T\ (100 17

2].

[ ]In our GP model, hyperparameters for each frame a@d@ is Hadamard p_roduct(elementwi_se r_nult_iplication). In
learned by maximizing the marginal likelihood that is of th¢N€ case of noise variance, the derivative is given by

form [11]: OM

_ 0log o2
logp(y| X,0) = [plylf,X,0)p(f|X.0)df (7)
N 1 With these gradient calculations, any gradient-based- opti
——log2r — —y (K +02I)" 'y mization methods can be applied to learn hyperparameters
2 2 L . A . .
1 ) that optimize the marginal likelihood. We ugminunc in
—5 log (K +a3,1)], (8) Matlab optimization toolbox in this paper.

= (1/)GO K, (10)

=o2]. (11)

n

where | - | is the determinant of a matrix. A gradient- A

based method can be used to estimate hyperparamet%rsEStlmtlon of Clean Speech

0 = [I,02]". Note that parameters and o2 parameters  In a voiced frame, we need to estimate clean speech from
should be positive. Thus the optimization (8) with respedtoisy observations. In our GP model, the clean speech is
to 0 is actually a constrained optimization. In practiceestimated from posterior distribution of the latent fuoos

this optimization is easily solved by an unconstrained opf, which is calculated by

timization with respect to the logarithm of hyperparamster

{logl,logo2}. The gradient of (8) with respect to thith o(f |y, X.0) = plyl £, X, 0)p(f| X,0) (12)
element oflog @ is given by p(y| X,0)
logp(y | X, 6) It follows from the Gaussian likelihood (6) that (12) is dgsi
dlogb; computed by

1 751 OM —1, 1 1 OM ~ o
¥ M Giga My Mg 49) p(fl v, X.0) = N(F.5), (13)




where the posterior meayf and the posterior covariance « N = 160 (the length of each frame, associated with 20
matrix 3 are calculated by, ms long)

— PO Experiments are performed for two tasks: (1) VAD; (2)
f = K(K+50)"y, (14) speech enhancement. In the case of VAD, we compare our
¥ = K-KK+0,I)"'K. (15) GP method (GP-VAD) to the entropy-based method (En-
VAD) [12], in terms of receiver operating characteristics
k?{OC) cure and area under curve (AUC) [4]. Fig. 2 show
ROC curves at different SNR levels for our method and

The estimation of the clean speech only needs the poster
mean f. The estimator of clean speeéhis

i = Ty (16) EN-VAD. Associated AUC is summarized in Table II. At
- . - SNR levels considered in experiments, our GP method out-
where f; means theth element off. performs En-VAD, since the length-scale parameters in our

The result (16) is understood as the smoothing of thgp method are considerably different between voiced and
response variableg. Let {\;, u;}¥ ; be the eigenvalues and ynyoiced frames.
eigenvectors of<. The responsg can be represented by the
set of the eigenvectory = Zf;l Yiu;, Wherey; = u/ y.
Then (16) is rewritten by

ROC curve: —2dB

N A
r i\
= —U;. 17
=1
We easily check that the component #n along u; is g
L . Pe 3o GP-VAD
eliminated if X\;/(\; + 62) < 1 [11]. In the cases of g = En-vap
most covariance function, the larger eigenvalues cormpo o1
to more slowly varying eigenvectors. Thus high-frequency o ‘ ‘ ‘ ‘ ‘
. . . . (o] 0.2 0.4 0.6 0.8 1
components iny is removed [11]. It is analog that high FALSE ALARM Rate
frequencies of noisy speech are smoothed out in frequency
domain. Fig. 2. ROC curves for our method (GP-VAD) and entropy-basethote
(En-VAD) in the case of input SNR = -2 dB.
TABLE |
ALGORITHM OUTLINE: OUR GPMODEL-BASED SPEECH ENHANCEMENT TABLE Il

AUC FOR OUR METHOD(GP-VAD) AND ENTROPY-BASED METHOD

Let N be the length of each framen be the index of frames and

€=Nx(m—1). (EN-VAD) UNDER VARIOUS NOISE CONDITIONS
form=1,...M
-
Sety = [z¢41,%¢42, -, Tepn]
X ={x\}i 0, Input SNR | GP-VAD | En-VAD
Find [ and 52 (see Sec. lII-A), bzd%b 82;2% 8%?12
It-Lis grater tharty,. _ 2 db 0.8484 | 0.7994
Se_t~{st}t:£_~_1 to random noise close to zero, 4 db 0.8835 0.8327
otherwise: i 6 db 0.8752 | 0.8472
Construct the kernel matri¥< with [ (5), 8 db 0.9033 0.8745
Estimate{ét}figl using (14) and (16),

end

Next we evaluate the speech enhancement performance
of our GP-based method that is presented in Sec. IlI-B,
with comparison to Kalman filter method [5]. After VAD

IV. NUMERICAL EXPERIMENTS is done, we apply our GP method to voiced frames, in order

We perform experiments using 15 different speech samplé® estimate clean speech through posterior means of latent
taken from NOIZEUS corpds each of which is about 2-3 functions. We consider two different measures to evaluate
seconds long and is resampled at 8 kHz. White Gaussi#fif performance: (1) root mean squared log-spectralstista
noise is synthetically added to clean speech in order #msLSD) [6]; (2) output SNR. The rmsLSD reflects the
generate noise-contaminated Signa's under various imtsspectral distance between true clean SpeeCh and estimated
conditions ranging from -2 dB to 8 dB. In all experimentssPeech computed, which is defined by

we use: 1 ("
LSDF = — *d 18
e meLSD = o [ V) e, (18)
o linr = 0.7 x 10% (the threshold involving the length- \here V(w) is the difference between two spectral models
scale parameter for VAD) (clean speech and estimated speech), given by

*Available at: http:/www.utdallas.edul.loizou/speeufizeus/ V(w) =1In(c?/] A(e?) %) —In((c")?/] A'(e?)|?),



where A(e’*) and A’(e’*) involve AR models of clean V. CONCLUSIONS

speech and estimated speech, respectively @anahd o’ e have presented a method with GP models which

represent the standard deviation of innovation (residiml) jointly performed VAD and speech enhancement. Modeling

each model. The output SNR reflects the difference betwegfpan speech by a GP smoother, we reformulated speech
clean speech and estimated speech in the time domain, whighhancement as a GP regression problem. Optimized length-

is defined by scale parameters provided a solution to VAD since they are
ZT 2 considerably different between voiced and unvoiced frames

SNR, = 10log;q —7 t=1 tA , (19) Clean speech estimation was done by posterior means of

> i1l — 5] latent functions in our GP models. Numerical experiments

where3, is the estimated speech in (16). have shown that our GP method works better, compared to

Table Il summarizes the performance of three methodSOMe Of existing methods in the task of VAD and speech
(1) our method; (2) Kalman filter (KF); Kalman filter with enhancement. Our current method works only when the noise
our GP-VAD (KF+VAD), showing that how much the outputis white Gaussian. Further extension is a future work that is
SNR and rmsLSD are improved, compared to the input SNREING in consideration.
and rmsLSD (the higher SNR and the lower rmsLSD indicatgcknowledgments: This work was supported by Korea
better performance). In each performance measure, our Gfhnistry of Knowledge Economy under the ITRC support

method outperforms KF and KF+VAD, producing higherprogram supervised by the IITA (IITA-2008-C1090-0801-
output SNR and lower rmsLSD. 0045).
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