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Abstract— Gaussian process (GP) model is a flexible nonpara-
metric Bayesian method that is widely used in regression and
classification. In this paper we present a probabilistic method
where we solve voice activity detection (VAD) and speech
enhancement in a single framework of GP regression, modeling
clean speech by a GP smoother. Optimized hyperparameters in
GP models lead us to a novel VAD method since learned length-
scale parameters in covariance functions are much different
between voiced and unvoiced frames. Clean speech is estimated
by posterior means in GP models. Numerical experiments
confirm the validity of our method.

I. I NTRODUCTION

SPEECH enhancement is a fundamental processing, the
goal of which is to estimate clean speech, given

noise-contaminated signals. Signals measured through micro-
phones in real-world environments, are always noisy data,
hence, the enhancement of speech or the elimination of
noise, plays a critical role for successful subsequent speech
processing. Various methods have been developed for speech
enhancement, including Wiener filter method [7], spectral
subtraction method [1], HMM-based method [13], signal
subspace method [3], Kalman filter method [9],H∞ filter-
based method [15], particle filter method [10], [16]. Speech
enhancement methods often require voice activity detection
(VAD) so that speech enhancement is applied to only voiced
frames in order to save the computational load. In general,
VAD and speech enhancement have been separately studied
and two different methods are jointly applied in a cascade
manner.

Gaussian process (GP) model has been widely used in
machine learning because of its flexible nonparametric nature
and computational simplicity [11], [14], [17]. In this paper
we present a GP model to solve VAD and speech enhance-
ment in a single framework. To this end, in each frame of
length N (N = 160 in our experiments, corresponding to
20 ms duration in the case of 8 kHz sampling frequency),
we model the clean speech by a latent function that takes
pastp and futurep samples as inputs. Such a latent function
is represented by random process with Gaussian prior. That
is, we formulate speech enhancement as a GP regression
problem. In the hyperparameter learning in GP models,
Gaussian kernel widths (length-scale parameters in squared
exponential covariance function) are much different between
voiced and unvoiced frames. This enables us to detect voice
activity frames. The clean speech is estimated by posterior
means in GP models. Numerical experiments are provided,
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confirming the useful behavior of our GP method for VAD
and speech enhancement.

II. GAUSSIAN PROCESSMODEL FORSPEECH

We assume that the noisy speech signalxt is a sum of
clean speechst and the white Gaussian noisent (with mean
0 and varianceσ2

n):

xt = st + nt, (1)

where nt ∼ N
(
0, σ2

n

)
. In each frame of lengthN , xt is

assumed to be a stationary process. We model the clean
speech by a latent function involving pastp samples and
future p samples ofxt, leading to

xt = f(x\t) + nt, (2)

where

x\t = [xt+p, xt+p−1, . . . , xt+1, xt−1, xt−2, . . . , xt−p]
⊤.

The model (2) is independently applied to each frame, i.e.,
the nonlinear functionsf(·) are different across frames. With
abuse of notations, we usef(·) without specifying the frame
index.

GP model represents the latent functionf(·) by a random
process with Gaussian prior, i.e.,

f(x\t) ∼ GP(0, k(x\t,x\τ )), (3)

k(·, ·) is a covariance function. We use the squared exponen-
tial covariance function (Gaussian kernel),

k
(
x\t,x\τ

)
= exp

{
−‖x\t − x\τ‖

2/l
}

, (4)

where‖ · ‖ denotes Euclidean norm andl > 0 is a length-
scale parameter (kernel width parameter).

Given a collection of inputX =
{
x\t

}ξ+N

t=ξ+1
(ξ = N(m−

1) for themth frame) and hyperparametersθ , [l, σ2
n]⊤, the

prior of latent functions is given by

p(f | X,θ) = N (0,K), (5)

where

f =
[
f(x\(ξ+1)), ..., f(x\(ξ+N))

]⊤
,

[K]u,v = exp
{
−‖x\(ξ+u) − x\(ξ+v)‖

2/l
}

.

Define response variables by

y = [xξ+1, xξ+2, . . . , xξ+N ]
⊤

.

Then, the likelihood ofy given the latent functionsf is
derived from the observation model (1),

p(y | f ,θ) = N (0, σ2
nI), (6)



whereI is the N × N identity matrix. The required tasks
for speech enhancement are two folds: (1) the estimation
of optimal hyperparameterŝθ (leading to VAD); (2) the
calculation of the posterior mean off (leading to clean
speech estimation).

III. T HE PROPOSEDMETHOD

A. Voice Activity Detection by Length-Scale Parameter

Our GP model-based VAD method (GP-VAD) considers
optimized length-scale parameters (kernel width) to detect
voiced frames. The GP-VAD method can be viewed a special
case of automatic relevance determination (ARD) that auto-
matically selects the relevant dimensions of input variables
[8]. In ARD, the relevance of each dimension is determined
by the inverse of length-scale parameters{1/l1, . . . , 1/l2p}.
When theith length-scale is very large, the covariance func-
tion is almost independent of theith input and its contribution
to inference is automatically removed. We directly apply this
simple idea to the task of VAD, observing that learned length-
scale parameters are very large for unvoiced frames (see Fig.
1).

In an unvoiced frame, GP smoother producesf(xξ+i) ≈ 0
for i = 1, . . . , N , leading tok(x\t,x\τ ) ≈ 1. Thus the
length-scale parameter becomes considerably large in such
a case. Unvoiced frames are easily detected by monitoring
learned length-scale parameters, i.e., when the learned length
scale parameter is larger than the thresholdlthr, it is decided
as an unvoiced frame. Fig. 1 shows an illustrative example.
In the 3rd plot in Fig. 1, length-scale parameters across
frames are plotted, where parameters are considerably large
for unvoiced frames. On the other hand, in the entropy-based
method (En-VAD) [12], entropies are used (see the 4th plot
in Fig. 1), where a careful selection of threshold is required
[2].

In our GP model, hyperparameters for each frame are
learned by maximizing the marginal likelihood that is of the
form [11]:

log p(y | X,θ) =

∫
p(y | f ,X,θ)p(f | X,θ)df (7)

= −
N

2
log 2π −

1

2
y⊤(K + σ2

nI)−1y

−
1

2
log |(K + σ2

nI)|, (8)

where | · | is the determinant of a matrix. A gradient-
based method can be used to estimate hyperparameters
θ = [l, σ2

n]⊤. Note that parametersl and σ2
n parameters

should be positive. Thus the optimization (8) with respect
to θ is actually a constrained optimization. In practice,
this optimization is easily solved by an unconstrained op-
timization with respect to the logarithm of hyperparameters,
{log l, log σ2

n}. The gradient of (8) with respect to theith
element oflog θ is given by

∂

∂ log θi

log p(y | X,θ)

=
1

2
y⊤M−1 ∂M

∂ log θi

M−1y −
1

2
tr(M−1 ∂M

∂ log θi

),(9)
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Fig. 1. From top to bottom: a noise-contaminated speech signal(at input
SNR 0dB); original clean speech; voiced/unvoiced frames detected by our
GP-VAD method; voiced/unvoiced frames detected by the entropy-based
method (En-VAD).

whereθi is the ith element inθ and M = K + σ2
nI. For

VAD, we need∂M/∂ log l that is given by

∂M

∂ log l
= (1/l)G ⊙ K, (10)

where G is a squared Euclidean distance matrix whose
(u, v)-element is given by

[G]u,v = ‖x\(ξ+u) − x\(ξ+v)‖
2,

and⊙ is Hadamard product(elementwise multiplication). In
the case of noise variance, the derivative is given by

∂M

∂ log σ2
n

= σ2
nI. (11)

With these gradient calculations, any gradient-based opti-
mization methods can be applied to learn hyperparameters
that optimize the marginal likelihood. We usefminunc in
Matlab optimization toolbox in this paper.

B. Estimation of Clean Speech

In a voiced frame, we need to estimate clean speech from
noisy observations. In our GP model, the clean speech is
estimated from posterior distribution of the latent functions
f , which is calculated by

p(f | y,X, θ̂) =
p(y | f ,X, θ̂)p(f | X, θ̂)

p(y | X, θ̂)
. (12)

It follows from the Gaussian likelihood (6) that (12) is easily
computed by

p(f | y,X, θ̂) = N (f ,Σ), (13)



where the posterior meanf and the posterior covariance
matrix Σ are calculated by,

f = K(K + σ̂2
nI)−1y, (14)

Σ = K − K(K + σ̂2
nI)−1K. (15)

The estimation of the clean speech only needs the posterior
meanf . The estimator of clean speechŝt is

ŝξ+i = f i, (16)

wheref i means theith element off .
The result (16) is understood as the smoothing of the

response variablesy. Let {λi,ui}
N
i=1 be the eigenvalues and

eigenvectors ofK. The responsey can be represented by the
set of the eigenvectors,y =

∑N

i=1 γiui, whereγi = u⊤
i y.

Then (16) is rewritten by

f =
N∑

i=1

γiλi

λi + σ̂2
n

ui. (17)

We easily check that the component iny along ui is
eliminated if λi/(λi + σ̂2

n) ≪ 1 [11]. In the cases of
most covariance function, the larger eigenvalues correspond
to more slowly varying eigenvectors. Thus high-frequency
components iny is removed [11]. It is analog that high
frequencies of noisy speech are smoothed out in frequency
domain.

TABLE I

ALGORITHM OUTLINE: OUR GPMODEL-BASED SPEECH ENHANCEMENT.

Let N be the length of each frame,m be the index of frames and
ξ = N ∗ (m − 1).
for m = 1, ..., M

Sety =
[
xξ+1, xξ+2, . . . , xξ+N

]⊤
,

X =
{
x\t

}ξ+N

t=ξ+1
,

Find l̂ and σ̂2
n (see Sec. III-A),

if l̂ is grater than̂lthr :
Set{ŝt}

ξ+N

t=ξ+1
to random noise close to zero,

otherwise:
Construct the kernel matrixK with l̂ (5),
Estimate{ŝt}

ξ+N

t=ξ+1
using (14) and (16),

end

IV. N UMERICAL EXPERIMENTS

We perform experiments using 15 different speech samples
taken from NOIZEUS corpus1, each of which is about 2-3
seconds long and is resampled at 8 kHz. White Gaussian
noise is synthetically added to clean speech in order to
generate noise-contaminated signals under various input SNR
conditions ranging from -2 dB to 8 dB. In all experiments
we use:

• p = 10
• l̂thr = 0.7 × 103 (the threshold involving the length-

scale parameter for VAD)

1Available at: http://www.utdallas.edu/.loizou/speech/noizeus/

• N = 160 (the length of each frame, associated with 20
ms long)

Experiments are performed for two tasks: (1) VAD; (2)
speech enhancement. In the case of VAD, we compare our
GP method (GP-VAD) to the entropy-based method (En-
VAD) [12], in terms of receiver operating characteristics
(ROC) cure and area under curve (AUC) [4]. Fig. 2 show
ROC curves at different SNR levels for our method and
En-VAD. Associated AUC is summarized in Table II. At
SNR levels considered in experiments, our GP method out-
performs En-VAD, since the length-scale parameters in our
GP method are considerably different between voiced and
unvoiced frames.
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Fig. 2. ROC curves for our method (GP-VAD) and entropy-based method
(En-VAD) in the case of input SNR = -2 dB.

TABLE II

AUC FOR OUR METHOD(GP-VAD) AND ENTROPY-BASED METHOD

(EN-VAD) UNDER VARIOUS NOISE CONDITIONS.

Input SNR GP-VAD En-VAD
-2 db 0.8151 0.7190
0 db 0.8262 0.7844
2 db 0.8484 0.7994
4 db 0.8835 0.8327
6 db 0.8752 0.8472
8 db 0.9033 0.8745

Next we evaluate the speech enhancement performance
of our GP-based method that is presented in Sec. III-B,
with comparison to Kalman filter method [5]. After VAD
is done, we apply our GP method to voiced frames, in order
to estimate clean speech through posterior means of latent
functions. We consider two different measures to evaluate
the performance: (1) root mean squared log-spectral-distance
(rmsLSD) [6]; (2) output SNR. The rmsLSD reflects the
spectral distance between true clean speech and estimated
speech computed, which is defined by

rmsLSD2 =
1

2π

∫ π

−π

|V (ω) |2 dω, (18)

whereV (ω) is the difference between two spectral models
(clean speech and estimated speech), given by

V (ω) = ln(σ2/ | A(ejω) | 2) − ln((σ′)2/ | A′(ejω) | 2),



where A(ejω) and A′(ejω) involve AR models of clean
speech and estimated speech, respectively andσ and σ′

represent the standard deviation of innovation (residual)in
each model. The output SNR reflects the difference between
clean speech and estimated speech in the time domain, which
is defined by

SNRo = 10 log10

∑T

t=1 s2
t∑T

t=1[st − ŝt]2
, (19)

whereŝt is the estimated speech in (16).
Table III summarizes the performance of three methods:

(1) our method; (2) Kalman filter (KF); Kalman filter with
our GP-VAD (KF+VAD), showing that how much the output
SNR and rmsLSD are improved, compared to the input SNR
and rmsLSD (the higher SNR and the lower rmsLSD indicate
better performance). In each performance measure, our GP
method outperforms KF and KF+VAD, producing higher
output SNR and lower rmsLSD.
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Fig. 3. The result of VAD and speech enhancement of our GP methodis
shown in the case of input SNR=0dB. From top to bottom: noisy speech
signal; original clean speech; the result of VAD; enhanced speech by our
GP method.

TABLE III

PERFORMANCE COMPARISON OF OURGP METHOD TO KALMAN FILTER

(KF) AND KALMAN FILTER WITH VAD (KF+VAD), IN TERMS OFSNR

AND RMSLSD MEASURES. THE FIRST COLUMN REPRESENTSSNR AND

RMSLSD BEFORE SPEECH ENHANCEMENT IS APPLIED.

(SNR, rmsLSD) our method KF KF + VAD
(-2, 3.10) db (5.63, 2.01) (3.06, 2.73) (5.06, 2.04)
(0, 3.01) db (6.94, 1.78) (4.38, 2.64) (6.26, 1.94)
(2, 2.91) db (8.52, 1.63) (6.06, 2.53) (7.70, 1.86)
(4, 2.79) db (9.82, 1.49) (7.74, 2.41) (9.19, 1.73)
(6, 2.64) db (11.57, 1.41) (9.52, 2.27) (10.66, 1.71)
(8, 2.50) db (12.98, 1.32) (11.33, 2.12) (12.39, 1.57)

V. CONCLUSIONS

We have presented a method with GP models which
jointly performed VAD and speech enhancement. Modeling
clean speech by a GP smoother, we reformulated speech
enhancement as a GP regression problem. Optimized length-
scale parameters provided a solution to VAD since they are
considerably different between voiced and unvoiced frames.
Clean speech estimation was done by posterior means of
latent functions in our GP models. Numerical experiments
have shown that our GP method works better, compared to
some of existing methods in the task of VAD and speech
enhancement. Our current method works only when the noise
is white Gaussian. Further extension is a future work that is
being in consideration.

Acknowledgments: This work was supported by Korea
Ministry of Knowledge Economy under the ITRC support
program supervised by the IITA (IITA-2008-C1090-0801-
0045).

REFERENCES

[1] S. F. Boll, “Suppression of acoustic noise in speech using spectral
subtraction,”IEEE Trans. Acoustics, Speech, and Signal Processing,
vol. 27, pp. 113–120, 1979.

[2] D. V. Compernolle, “Noise adaptation in a hiddenMarkov model
speech recognition system,”Computer Speech and Language, pp. 151–
167, 1989.

[3] Y. Ephraim and H. L. V. Trees, “A signal subspace approachfor speech
enhancement,”IEEE Trans. Acoustics, Speech, and Signal Processing,
vol. 2, pp. 355–358, Apr. 1993.

[4] T. Fawcett, “ROC graphs: Notes and practical considerations for
researchers,” HP Laboratories, Tech. Rep. HPL-2003-4, 2004.

[5] S. Gannot, D. Burshtein, and E. Weinstein, “Iterative and sequential
Kalman filter-based speech enhancement algorithms,”IEEE Trans.
Speech and Audio Processing, vol. 6, pp. 373–385, 1998.

[6] A. H. Gray Jr. and J. D. Markel, “Distance measures for speech
processing,”IEEE Trans. Acoustics, Speech, and Signal Processing,
vol. 28, no. 4, pp. 380–391, 1976.

[7] J. S. Lim and A. V. Oppenheim, “All-pole modeling of degraded
speech,” IEEE Trans. Acoustics, Speech, and Signal Processing,
vol. 26, pp. 197–210, 1978.

[8] R. M. Neal,Bayesian Learning for Neural Networks. Springer, 1996.
[9] K. K. Paliwal and A. Basu, “A speech enhancement method based on

Kalman filtering,” in Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, 1987, pp. 177–180.

[10] S. Park and S. Choi, “Rao-Blackwellized particle filtering for sequen-
tial speech enhancement,” inProceedings of the International Joint
Conference on Neural Networks, Vancouver, Canada, 2006.

[11] C. E. Rasmussen and C. K. I. Williams,Gaussian Processes for
Machine Learning. MIT Press, 2006.

[12] P. Renevey and A. Drygajlo, “Entropy based voice activity detection
in very noisy conditions,” inProceedings of EUROSPEECH, 2001.

[13] H. Sameti, H. Sheikhzadeh, L. Deng, and R. L. Brennan, “HMM-
based strategies for enhancement of speech signals embedded in
nonstationary noise,”IEEE Trans. Speech and Audio Processing,
vol. 6, no. 5, pp. 445–455, 1998.

[14] M. Seeger, “Gaussian processes for machine learning,”International
Journal of Neural Systems, vol. 14, no. 2, pp. 69–106, 2004.

[15] X. Shen and L. Deng, “A dynamic system approach to speech
enhancement using theH∞ filtering algorithm,” IEEE Trans. Speech
and Audio Processing, vol. 7, no. 4, pp. 391–399, 1999.

[16] J. Vermaak, C. Andrieu, A. Doucet, and S. J. Godsill, “Particle
methods for Bayesian modeling and enhancement of speech signals,”
IEEE Trans. Speech and Audio Processing, vol. 10, pp. 173–185, 2002.

[17] C. K. I. Williams and C. E. Rasmussen, “Gaussian processesfor
regression,” inAdvances in Neural Information Processing Systems,
vol. 8. MIT Press, 1996.


