Seungjin Choi Home

Ph.D students

Saehoon Kim Home

My major research interest is to build an efficient machine learning algorithms for large-scale image search. Specifically, I'm interested in learning to hash for an efficient multimedia search system. Learning to hash is to estimate a hash function for a constant time complexity search. I'm trying to develop a hashing algorithm for multi-view or multi-modality dataset. In addition, I'm also interested in dealing with web-scale image dataset (more than 1 billion), and developed a practical near-duplicate image discovery system on a 1 billion web-image dataset. In order to deal with web-scale dataset, I'm trying to implement a various machine learning algorithm with MapReduce framework.

Juho Lee Home

My primary research area is statistical machine learning with Bayesian nonparametric models. Currently, I'm interested in developing efficient posterior inference algorithms for Bayesian nonparametric models. I'm also interested in developing novel Bayesian nonparametric priors to solve complex real-world problems.

Suwon Suh Home

My research objective is modeling complex interactions in high dimensional large-scale time series from various domains. Main research interest is large-scale inference with probabilistic graphical model. Nowadays, I am trying to solve interaction related problems with various Machine Learning algorithms such as Topic Models, Neural Networks for timeseries and various point processes.

Jungtaek Kim Home

The research topic which I have been fascinated is automation of machine learning. Human machine learning experts have led the success of machine learning, applied in various cutting-edge technology industries, in recent years. However the tremendous attention from industries and also academia was not able to make non-experts apply off-the-shelf machine learning algorithms without domain knowledge, although approachable methods through open source packages have been developed. In this context, Bayesian optimization can be used to optimize various types of parameters. Therefore I think it will be a potent strategy for finding the extrema of objective functions that are expensive to evaluate.

Youngseok Yoon Home

Wonbin Kim Home

Nayeong Kim Home

Master Students

Jiyuu Yi Home

My research topic is deep learning. Especially, I have interest in CNN architectures which facilitate training extremely deep networks by adopting the skip connections. These days, combining advantages of the skip connections with LSTM cells, I'm trying to improve performance of LSTM networks.

Inhyuk Jo Home

My research topic is mainly generative models. Especially, I am interested in Generative Adversarial Networks(GAN) among them. GAN is relevantly new compared to other generative models but it has received much attention because of convincing generated data and a new training paradigm. I am trying to solve unstable training issues and apply GAN to various applications.

Minseop Park Home

My research topic is mainly about deep learning for various image classification and algorithmic tasks. Especially, deep learning lacks a few shot generalization capacity due to the large size of parameters in the network and the way it learns from data. I'm working on that problem in the perspective of meta-learning and memory network with deep architecture.

Yoonho Lee Home

I am interested in hierarchical deep reinforcement learning, an area of research that aims to use deep neural networks as function approximators to identify and exploit structures in sequential decision problems. If successful, we will be able to create artificial agents capable of learning complex behaviors not even achievable by humans.

YoungNam Kim Home


  • Nayeong Kim - Spring 2017
  • Byungjin Park - Spring 2017
  • Seung Ho Lee - Spring 2017
  • Byunghun So - Spring 2017
  • Nayeong Kim - Fall 2016
  • Byungjin Park - Fall 2016
  • Seung Ho Lee - Fall 2016
  • Woo Chang Jeong - Fall 2016
  • Jaehan Park - Summer 2016
  • Byungjin Park - Spring 2016
  • SunUng Mun - Spring 2016
  • Nayeong Kim - Spring 2016
  • Minho Kim - Fall 2015
  • Woo Hyeon Shim - Summer 2015, Fall 2015

Alumni / Alumnae

  • Bonkon Koo,
    "Brain-to-brain interface for animal control,"
    Ph.D., August 2017 (now in Samsung Electronics).
  • Yong-Deok Kim,
    "Bayesian learning for collaborative prediction,"
    Ph.D., February 2015 (now in Samsung Electronics).
  • Hyohyeong Kang,
    "Bayesian common spatial patterns for EEG classification,"
    Ph.D., February 2015 (now in Samsung Electronics).
  • Kye-Hyeon Kim,
    "Learning with minimax paths on graphs,"
    Ph.D., February 2015 (now in Intel Korea).
  • Yunjun Nam,
    "Tongue-machine interface with glossokinetic potentials,"
    Ph.D., February 2014 (now in RIKEN, Japan).
  • Yongsoo Kim,
    "Probabilistic inference in context-specific dynamic networks,"
    Ph.D., August 2013 (now in The Netherlands Cancer Institute, Netherlands).
  • Sunho Park,
    "Embeddings for multi-class and multi-label learning,"
    Ph.D., February 2013 (now in University of Texas Southwestern Medical Center at Dallas, USA).
  • Jiho Yoo,
    "Learning with matrix co-factorization,"
    Ph.D., February 2012 (now in Samsung Advanced Institute of Technology).
  • Sangki Kim,
    "Dynamic hand gesture recognition with accelerometer,"
    Ph.D., February 2010 (now in Vuno).
  • Jong Kyoung Kim,
    "Probabilistic models for motif discovery in biopolymer sequences,"
    Ph.D., February 2010 (now in DGIST).
  • Hyekyoung Lee,
    "Nonnegative matrix and tensor factorization methods for spectral EEG classification,"
    Ph.D., February 2009 (now in Seoul National University Medical School).
  • Vu Thi Hanh, MS, August 2017
  • Sojeong Ha, MS, February 2016 (now in Samsung Electronics).
  • Hien Duy Pham, MS, August 2014 (now in Xeron Healthcare).
  • Huong Thi Pham, MS, August 2014 (now in Xeron Healthcare).
  • Eunsil Gim, MS, February 2013 (now in Samsung).
  • Thu Hoai Tran, MS, February 2013 (now in Vietnam).
  • Huyen Le Thanh, MS, August 2012 (now in Vietnam).
  • Sangmin Lee, MS, February 2012 (now in Hyundai).
  • Hyojung Shin, MS, August 2011 (now in Microsoft, Redmond).
  • Shounan An, MS, February 2010 (now in LG).
  • Sun Ho Lee, MS, August 2007 (now in
  • Jong Kyoung Kim, MS, February 2006 (co-supervised).
  • Sunho Park, MS, February 2006.
  • Minje Kim, MS, February 2006 (now in Indiana University).
  • Jaehwan Kim, MS, February 2005 (co-supervised) (now in ETRI).
  • Kijeong Nam, MS, August 2005 (now in University of Maryland, College Park).
  • Heeyoul Choi, MS, February 2005 (now in Handong University)
  • Sookjeong Kim, MS, February 2005 (now in Ulsan)
  • Seong-Cheol Park, MS, February 2004 (co-supervised) (now in KT).
  • Yong-Choon Cho, MS, February 2004 (co-supervised) (now in Samsung).
  • Inseon Jang, MS, February 2004 (now in ETRI).
  • Yongjin Lee, MS, February 2004 (now in University of Washington, Seattle).
  • Hyejin Kim, MS, August 2003 (co-supervised) (now in ETRI).
  • Hye-Kyoung Lee, MS, February 2003
  • Sangki Kim, MS, February 2003 (co-supervised)
  • Heonseok Hong, MS, February 2002 (now in Samsung).
  • O Young Lee, MS, February 2001 (now in Hyundai).
  • Youngki Lyu, MS, February 2000 (now in Samsung)
  • Jeong-Min Yun
  • Yoonseop Kang
  • Jungsoo Ahn
  • Heuna Kim
  • Soyeon Lee
  • Pilwon Kim